Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
  • Sign in
I
isourceprofessionals
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 20
    • Issues 20
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Abel Zepeda
  • isourceprofessionals
  • Issues
  • #19

Closed
Open
Opened Apr 13, 2025 by Abel Zepeda@abelzepeda8716
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled variations varying from 1.5 to 70 billion criteria to build, experiment, and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to deploy the distilled versions of the designs also.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) established by DeepSeek AI that utilizes reinforcement learning to enhance thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. An essential distinguishing function is its reinforcement knowing (RL) action, which was utilized to refine the design's actions beyond the basic pre-training and tweak process. By integrating RL, DeepSeek-R1 can adjust better to user feedback and objectives, ultimately boosting both importance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) technique, implying it's geared up to break down complicated questions and reason through them in a detailed way. This directed thinking procedure enables the design to produce more accurate, transparent, and detailed responses. This model combines RL-based fine-tuning with CoT abilities, aiming to generate structured responses while concentrating on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has caught the market's attention as a flexible text-generation model that can be integrated into different workflows such as agents, logical reasoning and information interpretation jobs.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture permits activation of 37 billion specifications, enabling efficient reasoning by routing questions to the most relevant expert "clusters." This technique allows the design to focus on various issue domains while maintaining total . DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking capabilities of the main R1 model to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller, more efficient models to simulate the habits and thinking patterns of the bigger DeepSeek-R1 design, utilizing it as an instructor design.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest releasing this design with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid damaging material, and examine designs against crucial safety requirements. At the time of composing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce numerous guardrails tailored to different use cases and apply them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 design, you require access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To request a limit boost, setiathome.berkeley.edu develop a limitation increase request and reach out to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) authorizations to use Amazon Bedrock Guardrails. For directions, see Establish authorizations to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, avoid damaging content, and examine models against essential security criteria. You can implement security steps for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to evaluate user inputs and design actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The basic flow involves the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for inference. After receiving the design's output, another guardrail check is used. If the output passes this last check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following sections show reasoning using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, select Model catalog under Foundation models in the navigation pane. At the time of writing this post, you can use the InvokeModel API to conjure up the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and pick the DeepSeek-R1 model.

The design detail page provides important details about the model's abilities, prices structure, and implementation guidelines. You can discover detailed usage directions, including sample API calls and code snippets for combination. The model supports numerous text generation jobs, consisting of material development, code generation, and question answering, utilizing its reinforcement discovering optimization and CoT reasoning abilities. The page likewise consists of release options and licensing details to help you start with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, pick Deploy.

You will be prompted to set up the release details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters). 5. For Number of circumstances, enter a variety of circumstances (in between 1-100). 6. For Instance type, select your instance type. For optimum efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended. Optionally, you can set up sophisticated security and facilities settings, including virtual private cloud (VPC) networking, service role consents, and encryption settings. For many utilize cases, the default settings will work well. However, for production releases, you might want to examine these settings to align with your company's security and compliance requirements. 7. Choose Deploy to start using the design.

When the deployment is complete, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock playground. 8. Choose Open in play ground to access an interactive interface where you can explore different prompts and adjust design parameters like temperature level and maximum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for ideal results. For example, content for reasoning.

This is an outstanding way to explore the design's reasoning and text generation capabilities before integrating it into your applications. The play ground offers instant feedback, assisting you understand how the design reacts to various inputs and letting you fine-tune your triggers for ideal results.

You can quickly check the design in the play area through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to perform reasoning utilizing a deployed DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have produced the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime client, configures inference specifications, and sends out a demand to generate text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML services that you can deploy with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your data, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides 2 hassle-free techniques: utilizing the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both methods to assist you pick the technique that finest fits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The design browser shows available models, with details like the service provider name and design abilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 model card. Each model card shows crucial details, including:

- Model name

  • Provider name
  • Task classification (for instance, Text Generation). Bedrock Ready badge (if appropriate), suggesting that this model can be signed up with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to conjure up the model

    5. Choose the design card to view the model details page.

    The model details page includes the following details:

    - The model name and supplier details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab includes important details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage standards

    Before you deploy the design, it's suggested to review the design details and license terms to confirm compatibility with your use case.

    6. Choose Deploy to continue with deployment.

    7. For Endpoint name, utilize the immediately created name or create a customized one.
  1. For example type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, go into the variety of instances (default: 1). Selecting appropriate circumstances types and counts is vital for cost and efficiency optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time inference is selected by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this model, we highly advise adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to release the model.

    The release process can take numerous minutes to finish.

    When deployment is complete, your endpoint status will alter to InService. At this moment, the design is all set to accept inference requests through the endpoint. You can keep track of the deployment progress on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the release is total, you can conjure up the design using a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get started with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the necessary AWS approvals and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for inference programmatically. The code for deploying the design is offered in the Github here. You can clone the notebook and run from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail utilizing the Amazon Bedrock console or the API, and execute it as revealed in the following code:

    Clean up

    To avoid unwanted charges, finish the actions in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you deployed the model utilizing Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace implementations.
  5. In the Managed releases section, locate the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're erasing the correct release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to erase the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business construct innovative solutions utilizing AWS services and sped up compute. Currently, he is concentrated on developing methods for fine-tuning and enhancing the inference performance of big language models. In his downtime, Vivek delights in hiking, watching motion pictures, and attempting different cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about developing solutions that assist customers accelerate their AI journey and unlock business worth.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: abelzepeda8716/isourceprofessionals#19