Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
  • Sign in
M
moto-fan
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 27
    • Issues 27
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Adan Freame
  • moto-fan
  • Issues
  • #4

Closed
Open
Opened Apr 05, 2025 by Adan Freame@adanfreame9312
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek Open-Sources DeepSeek-R1 LLM with Performance Comparable To OpenAI's O1 Model


DeepSeek open-sourced DeepSeek-R1, an LLM fine-tuned with reinforcement knowing (RL) to improve reasoning ability. DeepSeek-R1 attains results on par with OpenAI's o1 design on numerous standards, including MATH-500 and SWE-bench.

DeepSeek-R1 is based on DeepSeek-V3, a mix of professionals (MoE) model recently open-sourced by DeepSeek. This base model is fine-tuned using Group Relative Policy Optimization (GRPO), a reasoning-oriented version of RL. The research team also performed understanding distillation from DeepSeek-R1 to open-source Qwen and Llama designs and released numerous versions of each; these designs exceed larger models, including GPT-4, on math and coding benchmarks.

[DeepSeek-R1 is] the initial step toward enhancing language design reasoning capabilities utilizing pure support knowing (RL). Our objective is to explore the potential of LLMs to establish thinking abilities with no supervised data, focusing on their self-evolution through a pure RL process...DeepSeek-R1 ... excels in a large range of jobs, consisting of creative writing, basic question answering, modifying, summarization, and more. Additionally, DeepSeek-R1 shows impressive performance on jobs requiring long-context understanding, substantially surpassing DeepSeek-V3 on long-context benchmarks.

To establish the design, DeepSeek began with DeepSeek-V3 as a base. They initially tried fine-tuning it just with RL, and without any monitored fine-tuning (SFT), producing a model called DeepSeek-R1-Zero, which they have actually also launched. This model displays strong reasoning performance, but" powerful reasoning behaviors, it faces several concerns. For instance, DeepSeek-R1-Zero has a hard time with challenges like poor readability and language blending."

To address this, the group utilized a brief stage of SFT to avoid the "cold start" issue of RL. They gathered numerous thousand examples of chain-of-thought reasoning to utilize in SFT of DeepSeek-V3 before running RL. After the RL process converged, they then gathered more SFT information using rejection tasting, resulting in a dataset of 800k samples. This dataset was for further fine-tuning and to produce the distilled models from Llama and Qwen.

DeepSeek assessed their design on a variety of reasoning, math, and coding standards and compared it to other designs, consisting of Claude-3.5- Sonnet, GPT-4o, and o1. DeepSeek-R1 outperformed all of them on numerous of the standards, including AIME 2024 and MATH-500.

DeepSeek-R1 Performance. Image Source: DeepSeek-R1 Technical Report

Within a few days of its release, the LMArena revealed that DeepSeek-R1 was ranked # 3 total in the arena and # 1 in coding and mathematics. It was likewise tied for # 1 with o1 in "Hard Prompt with Style Control" classification.

Django framework co-creator Simon Willison discussed his experiments with one of the DeepSeek distilled Llama designs on his blog site:

Each response begins with a ... pseudo-XML tag containing the chain of idea utilized to assist generate the action. [Given the timely] "a joke about a pelican and a walrus who run a tea room together" ... It then believed for 20 paragraphs before outputting the joke! ... [T] he joke is dreadful. But the process of arriving was such an interesting insight into how these new models work.

Andrew Ng's newsletter The Batch discussed DeepSeek-R1:

DeepSeek is quickly emerging as a strong home builder of open designs. Not just are these designs fantastic entertainers, but their license allows use of their outputs for distillation, potentially pushing forward the state of the art for language designs (and multimodal designs) of all sizes.

The DeepSeek-R1 designs are available on HuggingFace.

About the Author

Anthony Alford

Rate this Article

This material remains in the AI, ML & Data Engineering subject

Related Topics:

- AI, higgledy-piggledy.xyz ML & Data Engineering

  • Generative AI
  • Large language models

    - Related Editorial

    Related Sponsored Content

    - [eBook] Getting Started with Azure Kubernetes Service

    Related Sponsor

    Free services for AI apps. Are you ready to explore advanced technologies? You can start building smart apps with complimentary Azure app, data, and AI services to lessen upfront expenses. Find out more.

    How could we improve? Take the InfoQ reader survey

    Each year, we look for feedback from our readers to assist us enhance InfoQ. Would you mind costs 2 minutes to share your feedback in our brief survey? Your feedback will straight help us continuously develop how we support you. The InfoQ Team Take the study

    Related Content

    The InfoQ Newsletter

    A round-up of recently's material on InfoQ sent out every Tuesday. Join a community of over 250,000 senior designers.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: adanfreame9312/moto-fan#4