Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
  • Sign in
M
moto-fan
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 43
    • Issues 43
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Adan Freame
  • moto-fan
  • Issues
  • #40

Closed
Open
Opened Jun 02, 2025 by Adan Freame@adanfreame9312
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled versions varying from 1.5 to 70 billion specifications to develop, experiment, and properly scale your generative AI concepts on AWS.

In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to deploy the distilled variations of the designs also.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that uses reinforcement learning to improve thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. An essential distinguishing function is its reinforcement learning (RL) action, which was utilized to improve the design's responses beyond the standard pre-training and tweak process. By including RL, DeepSeek-R1 can adapt better to user feedback and goals, ultimately boosting both importance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) technique, indicating it's equipped to break down complex queries and factor through them in a detailed manner. This assisted thinking process allows the model to produce more accurate, transparent, and detailed responses. This model integrates RL-based fine-tuning with CoT capabilities, aiming to produce structured actions while concentrating on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has captured the industry's attention as a flexible text-generation design that can be incorporated into different workflows such as representatives, logical reasoning and data analysis jobs.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture enables activation of 37 billion specifications, making it possible for efficient inference by routing inquiries to the most relevant expert "clusters." This technique enables the design to concentrate on different issue domains while maintaining overall efficiency. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge circumstances to release the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 design to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more efficient models to simulate the behavior and thinking patterns of the bigger DeepSeek-R1 design, utilizing it as an instructor model.

You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise releasing this design with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to introduce safeguards, avoid hazardous content, and evaluate models against key security criteria. At the time of composing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce multiple guardrails tailored to various use cases and use them to the DeepSeek-R1 design, improving user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you require access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To ask for a limitation increase, create a limitation boost request and connect to your account group.

Because you will be deploying this design with Amazon Bedrock Guardrails, engel-und-waisen.de make certain you have the right AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For guidelines, see Establish consents to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, prevent hazardous content, and evaluate designs against key safety criteria. You can execute security measures for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to evaluate user inputs and model actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The general flow includes the following steps: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for inference. After getting the design's output, another guardrail check is used. If the output passes this last check, it's returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following sections demonstrate reasoning utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:

1. On the Amazon Bedrock console, select Model catalog under Foundation models in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and select the DeepSeek-R1 design.

The design detail page offers necessary details about the model's capabilities, rates structure, and implementation guidelines. You can find detailed usage instructions, including sample API calls and code bits for integration. The design supports different text generation tasks, including material creation, code generation, and concern answering, utilizing its reinforcement discovering optimization and CoT thinking capabilities. The page also includes release options and licensing details to assist you start with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, select Deploy.

You will be triggered to configure the implementation details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters). 5. For Number of instances, forum.pinoo.com.tr go into a variety of circumstances (between 1-100). 6. For Instance type, pick your instance type. For optimum efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested. Optionally, you can set up innovative security and facilities settings, including virtual private cloud (VPC) networking, service role approvals, and encryption settings. For the majority of use cases, the default settings will work well. However, for production implementations, you may desire to evaluate these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to begin utilizing the design.

When the implementation is total, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock playground. 8. Choose Open in play area to access an interactive interface where you can explore various prompts and change model criteria like temperature level and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for optimum outcomes. For instance, content for reasoning.

This is an exceptional method to check out the model's reasoning and text generation capabilities before integrating it into your applications. The playground offers immediate feedback, helping you comprehend how the design reacts to numerous inputs and letting you fine-tune your prompts for optimal results.

You can rapidly test the model in the play ground through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to perform inference using a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have produced the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime customer, configures reasoning criteria, and sends out a demand to create text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML solutions that you can release with just a few clicks. With SageMaker JumpStart, you can models to your usage case, with your data, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart provides 2 hassle-free techniques: using the instinctive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both methods to help you pick the approach that finest matches your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be prompted to create a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The model web browser displays available designs, with details like the company name and design abilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card. Each model card reveals crucial details, including:

- Model name

  • Provider name
  • Task classification (for example, Text Generation). Bedrock Ready badge (if relevant), showing that this model can be signed up with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to invoke the model

    5. Choose the design card to view the design details page.

    The model details page consists of the following details:

    - The model name and provider details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab includes crucial details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage standards

    Before you release the model, it's recommended to review the design details and license terms to confirm compatibility with your use case.

    6. Choose Deploy to continue with release.

    7. For Endpoint name, utilize the instantly produced name or produce a custom one.
  1. For Instance type ¸ select an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, go into the number of circumstances (default: 1). Selecting suitable instance types and counts is crucial for cost and efficiency optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time inference is chosen by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for precision. For this design, we highly advise sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to deploy the model.

    The release process can take a number of minutes to finish.

    When implementation is total, your endpoint status will change to InService. At this point, the model is prepared to accept reasoning requests through the endpoint. You can keep an eye on the deployment progress on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the implementation is total, you can invoke the design utilizing a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get started with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the needed AWS permissions and environment setup. The following is a detailed code example that shows how to release and wiki.snooze-hotelsoftware.de use DeepSeek-R1 for reasoning programmatically. The code for deploying the model is offered in the Github here. You can clone the notebook and run from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as shown in the following code:

    Tidy up

    To avoid undesirable charges, finish the actions in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you released the design utilizing Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace deployments.
  5. In the Managed deployments area, locate the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're erasing the proper deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for wavedream.wiki Inference at AWS. He assists emerging generative AI companies develop innovative solutions utilizing AWS services and sped up calculate. Currently, he is concentrated on developing strategies for fine-tuning and optimizing the reasoning performance of big language models. In his leisure time, Vivek takes pleasure in hiking, watching movies, and trying various cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about constructing options that help clients accelerate their AI journey and unlock company value.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: adanfreame9312/moto-fan#40