DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion parameters to develop, experiment, and properly scale your generative AI ideas on AWS.
In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to release the distilled versions of the designs too.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that utilizes support finding out to enhance reasoning abilities through a multi-stage training process from a DeepSeek-V3-Base structure. An essential differentiating function is its reinforcement learning (RL) step, which was utilized to improve the design's responses beyond the basic pre-training and tweak procedure. By integrating RL, DeepSeek-R1 can adapt more efficiently to user feedback and objectives, eventually boosting both relevance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) technique, suggesting it's geared up to break down complicated queries and reason through them in a detailed manner. This guided reasoning procedure allows the model to produce more accurate, transparent, and detailed answers. This model combines RL-based fine-tuning with CoT capabilities, aiming to generate structured reactions while focusing on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has captured the market's attention as a versatile text-generation model that can be incorporated into different workflows such as representatives, rational reasoning and information interpretation jobs.
DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture enables activation of 37 billion criteria, enabling efficient reasoning by routing inquiries to the most pertinent expert "clusters." This technique allows the design to concentrate on different issue domains while maintaining general efficiency. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning capabilities of the main R1 model to more efficient architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more efficient designs to mimic the behavior and reasoning patterns of the bigger DeepSeek-R1 model, utilizing it as an instructor model.
You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend deploying this model with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, avoid damaging content, and assess models against essential safety criteria. At the time of writing this blog site, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create multiple guardrails tailored to various usage cases and apply them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls throughout your generative AI applications.
Prerequisites
To release the DeepSeek-R1 model, you require access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To ask for a limit increase, produce a limitation boost demand and connect to your account group.
Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For directions, see Set up consents to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails permits you to introduce safeguards, prevent hazardous material, and assess models against key safety requirements. You can execute precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to assess user inputs and model actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.
The basic flow involves the following steps: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After getting the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following areas show reasoning using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:
1. On the Amazon Bedrock console, choose Model brochure under Foundation designs in the navigation pane.
At the time of writing this post, you can use the InvokeModel API to conjure up the model. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a and select the DeepSeek-R1 design.
The model detail page provides essential details about the model's abilities, prices structure, and application guidelines. You can discover detailed usage instructions, consisting of sample API calls and code bits for combination. The design supports different text generation jobs, consisting of content development, code generation, and forum.pinoo.com.tr question answering, utilizing its reinforcement finding out optimization and CoT reasoning capabilities.
The page likewise includes deployment alternatives and licensing details to assist you get started with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, select Deploy.
You will be triggered to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters).
5. For Number of circumstances, enter a number of circumstances (between 1-100).
6. For example type, choose your circumstances type. For ideal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised.
Optionally, you can set up sophisticated security and facilities settings, including virtual personal cloud (VPC) networking, service function consents, and file encryption settings. For most utilize cases, the default settings will work well. However, for production deployments, you might wish to examine these settings to line up with your company's security and compliance requirements.
7. Choose Deploy to start utilizing the model.
When the release is total, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock playground.
8. Choose Open in playground to access an interactive user interface where you can try out different triggers and adjust design parameters like temperature level and maximum length.
When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimal outcomes. For example, content for reasoning.
This is an outstanding method to check out the design's thinking and text generation capabilities before integrating it into your applications. The playground offers immediate feedback, helping you comprehend how the design responds to various inputs and letting you tweak your triggers for optimal outcomes.
You can rapidly test the model in the playground through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run reasoning using guardrails with the released DeepSeek-R1 endpoint
The following code example demonstrates how to carry out inference utilizing a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have created the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime customer, configures inference specifications, and sends out a request to generate text based upon a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML options that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your information, and deploy them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart uses 2 practical methods: using the instinctive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both methods to help you select the approach that best matches your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to release DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be prompted to create a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The design web browser displays available models, with details like the supplier name and design capabilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card.
Each design card reveals key details, including:
- Model name
- Provider name
- Task classification (for instance, Text Generation).
Bedrock Ready badge (if appropriate), indicating that this design can be signed up with Amazon Bedrock, enabling you to utilize Amazon Bedrock APIs to conjure up the design
5. Choose the model card to view the design details page.
The design details page includes the following details:
- The design name and service provider details. Deploy button to deploy the model. About and Notebooks tabs with detailed details
The About tab includes essential details, such as:
- Model description. - License details.
- Technical requirements.
- Usage standards
Before you release the design, it's advised to review the model details and license terms to validate compatibility with your usage case.
6. Choose Deploy to proceed with deployment.
7. For Endpoint name, utilize the instantly generated name or develop a customized one.
- For example type ¸ pick an instance type (default: ml.p5e.48 xlarge).
- For Initial instance count, enter the variety of instances (default: 1). Selecting suitable instance types and counts is vital for cost and performance optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is enhanced for sustained traffic and low latency.
- Review all setups for accuracy. For this design, we strongly recommend adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
- Choose Deploy to deploy the design.
The implementation process can take a number of minutes to finish.
When deployment is total, your endpoint status will change to InService. At this point, the model is prepared to accept reasoning demands through the endpoint. You can keep an eye on the implementation development on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the implementation is total, you can invoke the design utilizing a SageMaker runtime customer and integrate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To get started with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the needed AWS approvals and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for inference programmatically. The code for deploying the design is offered in the Github here. You can clone the note pad and run from SageMaker Studio.
You can run additional demands against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:
Clean up
To avoid undesirable charges, complete the steps in this area to tidy up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you deployed the design using Amazon Bedrock Marketplace, complete the following steps:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace deployments. - In the Managed implementations area, locate the endpoint you desire to erase.
- Select the endpoint, and on the Actions menu, select Delete.
- Verify the endpoint details to make certain you're deleting the proper release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business build innovative services using AWS services and sped up compute. Currently, he is concentrated on developing strategies for fine-tuning and optimizing the inference efficiency of big language models. In his totally free time, Vivek enjoys hiking, watching motion pictures, and attempting different foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is a Professional Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads item, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about building options that help consumers accelerate their AI journey and unlock business value.