Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
  • Sign in
S
sneakerxp
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 23
    • Issues 23
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Amee Gettinger
  • sneakerxp
  • Issues
  • #14

Closed
Open
Opened Mar 12, 2025 by Amee Gettinger@ameegettinger
  • Report abuse
  • New issue
Report abuse New issue

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library designed to help with the advancement of support knowing algorithms. It aimed to standardize how environments are defined in AI research, making published research more easily reproducible [24] [144] while supplying users with an easy interface for connecting with these environments. In 2022, new advancements of Gym have actually been transferred to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for reinforcement knowing (RL) research on computer game [147] using RL algorithms and research study generalization. Prior RL research focused mainly on to solve single jobs. Gym Retro provides the capability to generalize between video games with similar concepts however various looks.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robot agents initially do not have knowledge of how to even stroll, however are given the goals of finding out to move and to push the opposing agent out of the ring. [148] Through this adversarial knowing process, the agents find out how to adapt to altering conditions. When an agent is then eliminated from this virtual environment and placed in a new virtual environment with high winds, the agent braces to remain upright, recommending it had discovered how to stabilize in a generalized method. [148] [149] OpenAI's Igor trademarketclassifieds.com Mordatch argued that competitors in between representatives might develop an intelligence "arms race" that could increase an agent's ability to work even outside the context of the competitors. [148]
OpenAI 5

OpenAI Five is a team of 5 OpenAI-curated bots used in the competitive five-on-five video game Dota 2, that discover to play against human players at a high ability level entirely through trial-and-error algorithms. Before becoming a team of 5, the first public presentation happened at The International 2017, the annual best championship tournament for the game, where Dendi, an expert Ukrainian player, lost against a bot in a live one-on-one matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had discovered by playing against itself for 2 weeks of real time, which the knowing software was an action in the instructions of producing software that can deal with complex tasks like a cosmetic surgeon. [152] [153] The system utilizes a kind of support learning, as the bots learn with time by playing against themselves hundreds of times a day for months, and are rewarded for actions such as eliminating an enemy and taking map objectives. [154] [155] [156]
By June 2018, the ability of the bots broadened to play together as a full team of 5, and they had the ability to beat groups of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibition matches against expert players, however ended up losing both video games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, the reigning world champions of the video game at the time, 2:0 in a live exhibit match in San Francisco. [163] [164] The bots' final public appearance came later that month, where they played in 42,729 total games in a four-day open online competition, winning 99.4% of those video games. [165]
OpenAI 5's mechanisms in Dota 2's bot gamer reveals the challenges of AI systems in multiplayer online fight arena (MOBA) video games and how OpenAI Five has shown the use of deep support knowing (DRL) representatives to attain superhuman competence in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl uses device discovering to train a Shadow Hand, a human-like robot hand, to control physical objects. [167] It learns totally in simulation utilizing the exact same RL algorithms and training code as OpenAI Five. OpenAI dealt with the things orientation issue by utilizing domain randomization, a simulation technique which exposes the learner to a variety of experiences rather than attempting to fit to reality. The set-up for Dactyl, aside from having motion tracking cameras, also has RGB electronic cameras to allow the robotic to control an approximate item by seeing it. In 2018, OpenAI revealed that the system had the ability to control a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl could fix a Rubik's Cube. The robotic had the ability to resolve the puzzle 60% of the time. Objects like the Rubik's Cube introduce complex physics that is harder to design. OpenAI did this by improving the robustness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation method of generating progressively more tough environments. ADR varies from manual domain randomization by not requiring a human to specify randomization ranges. [169]
API

In June 2020, OpenAI revealed a multi-purpose API which it said was "for accessing new AI designs established by OpenAI" to let designers call on it for "any English language AI job". [170] [171]
Text generation

The business has actually promoted generative pretrained transformers (GPT). [172]
OpenAI's initial GPT model ("GPT-1")

The initial paper on generative pre-training of a transformer-based language design was written by Alec Radford and his coworkers, and released in preprint on OpenAI's site on June 11, 2018. [173] It revealed how a generative model of language could obtain world knowledge and process long-range dependencies by pre-training on a varied corpus with long stretches of adjoining text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is an unsupervised transformer language model and the follower to OpenAI's initial GPT model ("GPT-1"). GPT-2 was revealed in February 2019, with only limited demonstrative variations at first launched to the general public. The full variation of GPT-2 was not right away released due to concern about prospective abuse, consisting of applications for composing fake news. [174] Some professionals expressed uncertainty that GPT-2 positioned a considerable threat.

In reaction to GPT-2, the Allen Institute for Artificial Intelligence responded with a tool to spot "neural phony news". [175] Other researchers, such as Jeremy Howard, cautioned of "the innovation to absolutely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would muffle all other speech and be difficult to filter". [176] In November 2019, OpenAI released the complete variation of the GPT-2 language design. [177] Several sites host interactive presentations of different instances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue without supervision language models to be general-purpose learners, illustrated by GPT-2 attaining advanced accuracy and perplexity on 7 of 8 zero-shot tasks (i.e. the design was not further trained on any task-specific input-output examples).

The corpus it was trained on, forum.batman.gainedge.org called WebText, contains slightly 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It avoids certain concerns encoding vocabulary with word tokens by utilizing byte pair encoding. This permits representing any string of characters by encoding both private characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a not being watched transformer language design and the follower to GPT-2. [182] [183] [184] OpenAI mentioned that the full variation of GPT-3 contained 175 billion parameters, [184] two orders of magnitude bigger than the 1.5 billion [185] in the complete variation of GPT-2 (although GPT-3 models with as couple of as 125 million parameters were also trained). [186]
OpenAI mentioned that GPT-3 prospered at certain "meta-learning" jobs and could generalize the function of a single input-output pair. The GPT-3 release paper offered examples of translation and cross-linguistic transfer knowing in between English and Romanian, and between English and German. [184]
GPT-3 significantly enhanced benchmark results over GPT-2. OpenAI cautioned that such scaling-up of language models might be approaching or experiencing the basic capability constraints of predictive language models. [187] Pre-training GPT-3 required several thousand petaflop/s-days [b] of calculate, compared to tens of petaflop/s-days for the complete GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained design was not instantly released to the public for pediascape.science issues of possible abuse, although OpenAI planned to enable gain access to through a paid cloud API after a two-month free personal beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was certified solely to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has in addition been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was launched in private beta. [194] According to OpenAI, the model can develop working code in over a lots shows languages, a lot of effectively in Python. [192]
Several issues with problems, design flaws and security vulnerabilities were pointed out. [195] [196]
GitHub Copilot has been implicated of giving off copyrighted code, with no author attribution or license. [197]
OpenAI revealed that they would cease assistance for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI revealed the release of Generative Pre-trained Transformer 4 (GPT-4), efficient in accepting text or image inputs. [199] They announced that the upgraded innovation passed a simulated law school bar exam with a score around the top 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 could likewise check out, examine or generate up to 25,000 words of text, it-viking.ch and compose code in all major programming languages. [200]
Observers reported that the model of ChatGPT using GPT-4 was an enhancement on the previous GPT-3.5-based model, with the caveat that GPT-4 retained a few of the problems with earlier revisions. [201] GPT-4 is likewise capable of taking images as input on ChatGPT. [202] OpenAI has declined to expose various technical details and data about GPT-4, such as the accurate size of the model. [203]
GPT-4o

On May 13, 2024, OpenAI announced and launched GPT-4o, which can process and generate text, images and audio. [204] GPT-4o attained modern results in voice, multilingual, and vision criteria, setting new records in audio speech acknowledgment and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) criteria compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller version of GPT-4o changing GPT-3.5 Turbo on the ChatGPT interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI expects it to be particularly useful for enterprises, start-ups and developers seeking to automate services with AI agents. [208]
o1

On September 12, 2024, OpenAI launched the o1-preview and o1-mini designs, which have actually been designed to take more time to think of their actions, causing greater accuracy. These models are particularly effective in science, coding, and thinking jobs, and were made available to ChatGPT Plus and Team members. [209] [210] In December 2024, o1-preview was replaced by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the follower of the o1 reasoning design. OpenAI also revealed o3-mini, a lighter and much faster version of OpenAI o3. As of December 21, 2024, this model is not available for public usage. According to OpenAI, they are testing o3 and o3-mini. [212] [213] Until January 10, 2025, safety and security scientists had the chance to obtain early access to these designs. [214] The design is called o3 instead of o2 to avoid confusion with telecommunications companies O2. [215]
Deep research study

Deep research is an agent developed by OpenAI, revealed on February 2, 2025. It leverages the capabilities of OpenAI's o3 model to perform extensive web browsing, data analysis, and synthesis, providing detailed reports within a timeframe of 5 to 30 minutes. [216] With searching and Python tools enabled, it reached a precision of 26.6 percent on HLE (Humanity's Last Exam) benchmark. [120]
Image category

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to analyze the semantic similarity in between text and images. It can especially be used for image classification. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer model that develops images from textual descriptions. [218] DALL-E utilizes a 12-billion-parameter variation of GPT-3 to translate natural language inputs (such as "a green leather purse formed like a pentagon" or "an isometric view of an unfortunate capybara") and generate matching images. It can produce images of sensible objects ("a stained-glass window with a picture of a blue strawberry") along with items that do not exist in reality ("a cube with the texture of a porcupine"). Since March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI revealed DALL-E 2, an upgraded version of the design with more sensible outcomes. [219] In December 2022, OpenAI published on GitHub software application for Point-E, a new simple system for converting a text description into a 3-dimensional model. [220]
DALL-E 3

In September 2023, OpenAI revealed DALL-E 3, a more powerful design much better able to generate images from complex descriptions without manual prompt engineering and render complicated details like hands and text. [221] It was launched to the public as a ChatGPT Plus feature in October. [222]
Text-to-video

Sora

Sora is a text-to-video design that can produce videos based upon short detailed triggers [223] as well as extend existing videos forwards or backwards in time. [224] It can create videos with resolution up to 1920x1080 or 1080x1920. The optimum length of generated videos is unknown.

Sora's advancement team named it after the Japanese word for "sky", to symbolize its "unlimited imaginative potential". [223] Sora's technology is an adjustment of the innovation behind the DALL · E 3 text-to-image design. [225] OpenAI trained the system utilizing publicly-available videos in addition to copyrighted videos certified for that purpose, but did not expose the number or the exact sources of the videos. [223]
OpenAI showed some Sora-created high-definition videos to the general public on February 15, 2024, mentioning that it might produce videos approximately one minute long. It likewise shared a technical report highlighting the techniques utilized to train the model, and the design's capabilities. [225] It acknowledged some of its imperfections, including battles mimicing complex physics. [226] Will Douglas Heaven of the MIT Technology Review called the demonstration videos "excellent", but kept in mind that they need to have been cherry-picked and may not represent Sora's common output. [225]
Despite uncertainty from some academic leaders following Sora's public demonstration, noteworthy entertainment-industry figures have actually revealed substantial interest in the technology's potential. In an interview, actor/filmmaker Tyler Perry revealed his astonishment at the innovation's capability to create practical video from text descriptions, citing its potential to change storytelling and material creation. He said that his excitement about Sora's possibilities was so strong that he had actually decided to pause prepare for broadening his Atlanta-based movie studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech acknowledgment model. [228] It is trained on a big dataset of diverse audio and is likewise a multi-task design that can carry out multilingual speech acknowledgment in addition to speech translation and language identification. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to anticipate subsequent musical notes in MIDI music files. It can generate songs with 10 instruments in 15 designs. According to The Verge, a tune produced by MuseNet tends to begin fairly however then fall under chaos the longer it plays. [230] [231] In popular culture, preliminary applications of this tool were utilized as early as 2020 for the internet psychological thriller Ben Drowned to create music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to create music with vocals. After training on 1.2 million samples, wiki.whenparked.com the system accepts a genre, artist, and a bit of lyrics and outputs song samples. OpenAI specified the songs "reveal regional musical coherence [and] follow standard chord patterns" but acknowledged that the songs do not have "familiar larger musical structures such as choruses that repeat" which "there is a significant gap" between Jukebox and human-generated music. The Verge stated "It's technologically remarkable, even if the results seem like mushy versions of songs that might feel familiar", while Business Insider stated "surprisingly, a few of the resulting tunes are memorable and sound genuine". [234] [235] [236]
User interfaces

Debate Game

In 2018, OpenAI introduced the Debate Game, which teaches devices to dispute toy issues in front of a human judge. The function is to research whether such a technique may assist in auditing AI decisions and in establishing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every considerable layer and neuron of 8 neural network models which are frequently studied in interpretability. [240] Microscope was produced to evaluate the features that form inside these neural networks easily. The designs consisted of are AlexNet, VGG-19, various versions of Inception, and different versions of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is an expert system tool developed on top of GPT-3 that provides a conversational user interface that enables users to ask concerns in natural language. The system then responds with a response within seconds.

Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: ameegettinger/sneakerxp#14