Artificial General Intelligence
Artificial general intelligence (AGI) is a type of expert system (AI) that matches or goes beyond human cognitive abilities across a vast array of cognitive jobs. This contrasts with narrow AI, which is limited to particular tasks. [1] Artificial superintelligence (ASI), wiki.rolandradio.net on the other hand, refers to AGI that significantly goes beyond human cognitive abilities. AGI is thought about one of the definitions of strong AI.
Creating AGI is a main objective of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 study determined 72 active AGI research study and advancement tasks throughout 37 countries. [4]
The timeline for achieving AGI stays a subject of ongoing argument among researchers and specialists. Since 2023, some argue that it might be possible in years or years; others keep it might take a century or longer; a minority think it may never ever be achieved; and another minority declares that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has expressed concerns about the rapid development towards AGI, recommending it could be accomplished faster than lots of anticipate. [7]
There is argument on the precise definition of AGI and relating to whether contemporary large language models (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a typical topic in sci-fi and futures studies. [9] [10]
Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many experts on AI have actually stated that mitigating the danger of human termination postured by AGI needs to be an international concern. [14] [15] Others discover the advancement of AGI to be too remote to provide such a danger. [16] [17]
Terminology
AGI is likewise called strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or basic smart action. [21]
Some academic sources book the term "strong AI" for computer system programs that experience life or consciousness. [a] In contrast, weak AI (or narrow AI) has the ability to fix one particular issue but does not have basic cognitive capabilities. [22] [19] Some academic sources utilize "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the same sense as people. [a]
Related principles consist of artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a theoretical kind of AGI that is a lot more typically smart than human beings, [23] while the notion of transformative AI relates to AI having a large impact on society, for example, comparable to the farming or commercial transformation. [24]
A framework for classifying AGI in levels was proposed in 2023 by Google DeepMind researchers. They specify 5 levels of AGI: emerging, competent, expert, virtuoso, and superhuman. For example, a qualified AGI is specified as an AI that surpasses 50% of experienced grownups in a large range of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly specified but with a threshold of 100%. They think about big language models like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have been proposed. One of the leading proposals is the Turing test. However, there are other widely known definitions, and some scientists disagree with the more popular techniques. [b]
Intelligence traits
Researchers generally hold that intelligence is required to do all of the following: [27]
reason, usage strategy, solve puzzles, and make judgments under uncertainty
represent understanding, consisting of common sense knowledge
plan
learn
- communicate in natural language
- if required, integrate these skills in completion of any provided objective
Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and choice making) think about extra characteristics such as creativity (the capability to form unique psychological images and ideas) [28] and autonomy. [29]
Computer-based systems that exhibit numerous of these capabilities exist (e.g. see computational creativity, automated thinking, decision support system, robot, evolutionary calculation, smart representative). There is argument about whether modern AI systems have them to an appropriate degree.
Physical characteristics
Other abilities are considered preferable in smart systems, as they might affect intelligence or aid in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, etc), and - the capability to act (e.g. move and control things, modification location to check out, and so on).
This consists of the ability to find and respond to risk. [31]
Although the ability to sense (e.g. see, hear, etc) and the capability to act (e.g. relocation and manipulate items, modification place to explore, etc) can be desirable for some smart systems, [30] these physical abilities are not strictly needed for an entity to qualify as AGI-particularly under the thesis that big language designs (LLMs) may currently be or end up being AGI. Even from a less optimistic perspective on LLMs, there is no company requirement for an AGI to have a human-like form; being a silicon-based computational system is adequate, offered it can process input (language) from the external world in location of human senses. This interpretation aligns with the understanding that AGI has actually never been proscribed a particular physical embodiment and therefore does not require a capability for locomotion or traditional "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to verify human-level AGI have actually been thought about, consisting of: [33] [34]
The concept of the test is that the maker has to try and pretend to be a man, by responding to questions put to it, and it will only pass if the pretence is reasonably persuading. A considerable part of a jury, who should not be expert about machines, must be taken in by the pretence. [37]
AI-complete problems
An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to solve it, one would require to execute AGI, due to the fact that the option is beyond the capabilities of a purpose-specific algorithm. [47]
There are numerous problems that have actually been conjectured to need basic intelligence to resolve along with people. Examples include computer vision, natural language understanding, and dealing with unanticipated scenarios while resolving any real-world issue. [48] Even a specific job like translation needs a machine to read and compose in both languages, follow the author's argument (reason), understand the context (knowledge), and consistently reproduce the author's original intent (social intelligence). All of these problems require to be solved all at once in order to reach human-level machine efficiency.
However, a number of these tasks can now be carried out by modern-day big language models. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on lots of standards for reading comprehension and visual reasoning. [49]
History
Classical AI
Modern AI research study began in the mid-1950s. [50] The very first generation of AI researchers were encouraged that artificial basic intelligence was possible and that it would exist in simply a couple of years. [51] AI pioneer Herbert A. Simon composed in 1965: "machines will be capable, within twenty years, of doing any work a man can do." [52]
Their forecasts were the inspiration for forum.pinoo.com.tr Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they might create by the year 2001. AI pioneer Marvin Minsky was an expert [53] on the project of making HAL 9000 as realistic as possible according to the agreement predictions of the time. He said in 1967, "Within a generation ... the problem of creating 'synthetic intelligence' will considerably be solved". [54]
Several classical AI jobs, such as Doug Lenat's Cyc project (that started in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it ended up being apparent that researchers had grossly ignored the trouble of the job. Funding companies ended up being doubtful of AGI and put scientists under increasing pressure to produce useful "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI goals like "continue a table talk". [58] In action to this and the success of specialist systems, both industry and federal government pumped cash into the field. [56] [59] However, confidence in AI spectacularly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever satisfied. [60] For the second time in 20 years, AI scientists who predicted the imminent accomplishment of AGI had been misinterpreted. By the 1990s, AI researchers had a credibility for making vain promises. They became hesitant to make forecasts at all [d] and prevented reference of "human level" synthetic intelligence for worry of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI attained industrial success and academic respectability by focusing on specific sub-problems where AI can produce proven results and business applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the innovation industry, and research study in this vein is heavily funded in both academia and industry. As of 2018 [upgrade], development in this field was thought about an emerging trend, and a fully grown stage was expected to be reached in more than 10 years. [64]
At the turn of the century, numerous mainstream AI researchers [65] hoped that strong AI could be established by integrating programs that solve different sub-problems. Hans Moravec wrote in 1988:
I am confident that this bottom-up route to expert system will one day fulfill the conventional top-down route majority way, prepared to supply the real-world proficiency and the commonsense knowledge that has actually been so frustratingly evasive in thinking programs. Fully intelligent makers will result when the metaphorical golden spike is driven joining the two efforts. [65]
However, even at the time, this was challenged. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by stating:
The expectation has actually typically been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is truly only one viable path from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer will never ever be reached by this path (or vice versa) - nor is it clear why we need to even try to reach such a level, considering that it looks as if arriving would just amount to uprooting our signs from their intrinsic significances (thereby merely lowering ourselves to the functional equivalent of a programmable computer). [66]
Modern artificial general intelligence research study
The term "synthetic general intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the capability to satisfy objectives in a wide variety of environments". [68] This kind of AGI, characterized by the ability to maximise a mathematical meaning of intelligence rather than exhibit human-like behaviour, [69] was likewise called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The first summer season school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, organized by Lex Fridman and featuring a variety of visitor speakers.
Since 2023 [upgrade], a small number of computer researchers are active in AGI research, and lots of add to a series of AGI conferences. However, progressively more scientists have an interest in open-ended learning, [76] [77] which is the concept of allowing AI to continually find out and innovate like humans do.
Feasibility
Since 2023, the development and prospective achievement of AGI stays a subject of extreme debate within the AI neighborhood. While conventional consensus held that AGI was a far-off goal, current advancements have actually led some scientists and industry figures to declare that early kinds of AGI might already exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "devices will be capable, within twenty years, of doing any work a man can do". This prediction stopped working to come real. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century due to the fact that it would require "unforeseeable and basically unforeseeable developments" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between contemporary computing and human-level artificial intelligence is as wide as the gulf in between current area flight and useful faster-than-light spaceflight. [80]
An additional difficulty is the lack of clearness in defining what intelligence requires. Does it require consciousness? Must it display the capability to set objectives along with pursue them? Is it simply a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are facilities such as preparation, thinking, and causal understanding needed? Does intelligence need explicitly duplicating the brain and its particular professors? Does it need emotions? [81]
Most AI scientists believe strong AI can be accomplished in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of attaining strong AI. [82] [83] John McCarthy is among those who think human-level AI will be achieved, but that today level of development is such that a date can not accurately be forecasted. [84] AI experts' views on the feasibility of AGI wax and subside. Four polls carried out in 2012 and 2013 suggested that the median price quote amongst professionals for when they would be 50% confident AGI would arrive was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the professionals, 16.5% responded to with "never ever" when asked the exact same question but with a 90% self-confidence instead. [85] [86] Further present AGI progress factors to consider can be found above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year amount of time there is a strong predisposition towards forecasting the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They examined 95 predictions made in between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft scientists released a comprehensive evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it could reasonably be considered as an early (yet still insufficient) version of an artificial basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outperforms 99% of humans on the Torrance tests of imaginative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a considerable level of basic intelligence has actually already been accomplished with frontier models. They composed that hesitation to this view originates from 4 primary factors: a "healthy uncertainty about metrics for AGI", an "ideological dedication to alternative AI theories or strategies", a "commitment to human (or biological) exceptionalism", or a "concern about the economic ramifications of AGI". [91]
2023 likewise marked the development of large multimodal designs (large language designs efficient in processing or generating multiple modalities such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the very first of a series of models that "invest more time thinking before they respond". According to Mira Murati, this ability to think before responding represents a new, extra paradigm. It enhances design outputs by spending more computing power when creating the response, whereas the model scaling paradigm improves outputs by increasing the model size, training information and training calculate power. [93] [94]
An OpenAI employee, Vahid Kazemi, declared in 2024 that the company had accomplished AGI, specifying, "In my viewpoint, we have already attained AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "much better than most people at a lot of jobs." He likewise attended to criticisms that large language designs (LLMs) merely follow predefined patterns, comparing their knowing process to the scientific approach of observing, assuming, and confirming. These declarations have stimulated argument, as they depend on a broad and unconventional definition of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models demonstrate remarkable versatility, they may not completely fulfill this standard. Notably, Kazemi's comments came soon after OpenAI eliminated "AGI" from the regards to its collaboration with Microsoft, triggering speculation about the business's strategic intents. [95]
Timescales
Progress in artificial intelligence has traditionally gone through durations of quick development separated by periods when development appeared to stop. [82] Ending each hiatus were basic advances in hardware, software or both to produce space for additional development. [82] [98] [99] For example, the computer system hardware available in the twentieth century was not enough to carry out deep knowing, which needs great deals of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel says that quotes of the time needed before a truly flexible AGI is constructed vary from ten years to over a century. Since 2007 [upgrade], the consensus in the AGI research study community seemed to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI scientists have actually provided a wide variety of viewpoints on whether progress will be this quick. A 2012 meta-analysis of 95 such opinions found a predisposition towards anticipating that the onset of AGI would take place within 16-26 years for modern and historic predictions alike. That paper has been slammed for how it categorized viewpoints as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, considerably much better than the second-best entry's rate of 26.3% (the traditional technique utilized a weighted sum of ratings from different pre-defined classifiers). [105] AlexNet was related to as the preliminary ground-breaker of the present deep learning wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on openly available and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds around to a six-year-old kid in very first grade. A grownup comes to about 100 typically. Similar tests were brought out in 2014, with the IQ rating reaching an optimum value of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language design efficient in performing numerous varied tasks without specific training. According to Gary Grossman in a VentureBeat article, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be categorized as a narrow AI system. [108]
In the same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI requested changes to the chatbot to adhere to their safety standards; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system capable of carrying out more than 600 various tasks. [110]
In 2023, Microsoft Research released a research study on an early variation of OpenAI's GPT-4, competing that it displayed more general intelligence than previous AI models and showed human-level efficiency in tasks covering several domains, such as mathematics, coding, and law. This research sparked a dispute on whether GPT-4 could be considered an early, insufficient variation of synthetic basic intelligence, emphasizing the need for further expedition and evaluation of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton mentioned that: [112]
The concept that this things might actually get smarter than people - a few individuals thought that, [...] But the majority of people thought it was method off. And I thought it was method off. I believed it was 30 to 50 years and even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis likewise stated that "The progress in the last few years has actually been quite unbelievable", which he sees no factor why it would slow down, anticipating AGI within a decade or even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within 5 years, AI would be capable of passing any test at least in addition to humans. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI staff member, estimated AGI by 2027 to be "noticeably possible". [115]
Whole brain emulation
While the advancement of transformer models like in ChatGPT is thought about the most promising course to AGI, [116] [117] entire brain emulation can work as an alternative technique. With whole brain simulation, a brain model is built by scanning and mapping a biological brain in detail, and after that copying and mimicing it on a computer system or another computational device. The simulation design need to be sufficiently devoted to the initial, so that it acts in virtually the same method as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is talked about in computational neuroscience and neuroinformatics, and for medical research study purposes. It has been discussed in expert system research [103] as a method to strong AI. Neuroimaging innovations that might deliver the required comprehensive understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of sufficient quality will end up being readily available on a similar timescale to the computing power required to emulate it.
Early estimates
For low-level brain simulation, an extremely powerful cluster of computer systems or GPUs would be needed, offered the enormous amount of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by their adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based on a basic switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at various quotes for the hardware required to equate to the human brain and adopted a figure of 1016 computations per second (cps). [e] (For comparison, if a "computation" was equivalent to one "floating-point operation" - a measure used to rate current supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, accomplished in 2011, while 1018 was achieved in 2022.) He used this figure to forecast the required hardware would be available at some point in between 2015 and 2025, if the exponential growth in computer power at the time of composing continued.
Current research study
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has established a particularly in-depth and publicly available atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based methods
The synthetic nerve cell design assumed by Kurzweil and used in lots of existing synthetic neural network implementations is simple compared to biological neurons. A brain simulation would likely have to capture the detailed cellular behaviour of biological neurons, presently understood just in broad overview. The overhead presented by complete modeling of the biological, chemical, and physical information of neural behaviour (particularly on a molecular scale) would require computational powers several orders of magnitude bigger than Kurzweil's quote. In addition, the estimates do not represent glial cells, which are known to contribute in cognitive procedures. [125]
A fundamental criticism of the simulated brain method stems from embodied cognition theory which asserts that human embodiment is a vital element of human intelligence and is required to ground significance. [126] [127] If this theory is right, any totally functional brain design will need to include more than just the neurons (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, but it is unknown whether this would be adequate.
Philosophical point of view
"Strong AI" as specified in viewpoint
In 1980, thinker John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference in between 2 hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness". Weak AI hypothesis: A synthetic intelligence system can (just) imitate it thinks and has a mind and awareness.
The first one he called "strong" since it makes a more powerful statement: it assumes something unique has taken place to the maker that exceeds those abilities that we can check. The behaviour of a "weak AI" device would be specifically identical to a "strong AI" machine, however the latter would also have subjective mindful experience. This usage is likewise common in scholastic AI research study and books. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil use the term "strong AI" to suggest "human level artificial basic intelligence". [102] This is not the very same as Searle's strong AI, unless it is assumed that consciousness is required for human-level AGI. Academic thinkers such as Searle do not think that is the case, and to most expert system researchers the concern is out-of-scope. [130]
Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to understand if it in fact has mind - indeed, there would be no chance to tell. For AI research, Searle's "weak AI hypothesis" is equivalent to the statement "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for given, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research, "Strong AI" and "AGI" are two various things.
Consciousness
Consciousness can have various significances, and some elements play substantial functions in sci-fi and the ethics of synthetic intelligence:
Sentience (or "sensational awareness"): The capability to "feel" perceptions or emotions subjectively, rather than the ability to reason about perceptions. Some thinkers, such as David Chalmers, use the term "consciousness" to refer specifically to phenomenal consciousness, which is roughly equivalent to life. [132] Determining why and how subjective experience occurs is known as the hard issue of awareness. [133] Thomas Nagel described in 1974 that it "feels like" something to be conscious. If we are not conscious, then it doesn't feel like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat appears to be conscious (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer declared that the company's AI chatbot, LaMDA, had actually attained sentience, though this claim was extensively contested by other professionals. [135]
Self-awareness: To have conscious awareness of oneself as a different individual, particularly to be consciously mindful of one's own thoughts. This is opposed to merely being the "topic of one's believed"-an os or debugger has the ability to be "mindful of itself" (that is, to represent itself in the very same way it represents everything else)-however this is not what individuals generally indicate when they utilize the term "self-awareness". [g]
These qualities have an ethical measurement. AI sentience would trigger issues of well-being and legal protection, likewise to animals. [136] Other elements of awareness related to cognitive capabilities are likewise appropriate to the concept of AI rights. [137] Figuring out how to integrate innovative AI with existing legal and social structures is an emerging concern. [138]
Benefits
AGI might have a wide array of applications. If oriented towards such objectives, AGI might help mitigate various issues in the world such as cravings, poverty and health problems. [139]
AGI might enhance productivity and efficiency in most tasks. For example, in public health, AGI might accelerate medical research, especially against cancer. [140] It could look after the senior, [141] and democratize access to fast, high-quality medical diagnostics. It could use fun, cheap and customized education. [141] The need to work to subsist could end up being outdated if the wealth produced is appropriately rearranged. [141] [142] This likewise raises the concern of the place of humans in a significantly automated society.
AGI could likewise help to make reasonable choices, and to anticipate and avoid disasters. It might likewise assist to reap the benefits of possibly catastrophic technologies such as nanotechnology or climate engineering, while avoiding the associated threats. [143] If an AGI's primary objective is to avoid existential disasters such as human extinction (which might be tough if the Vulnerable World Hypothesis ends up being true), [144] it might take procedures to considerably minimize the dangers [143] while minimizing the effect of these measures on our quality of life.
Risks
Existential risks
AGI may represent numerous kinds of existential risk, which are dangers that threaten "the early termination of Earth-originating intelligent life or the long-term and extreme destruction of its potential for desirable future advancement". [145] The threat of human termination from AGI has actually been the topic of numerous debates, but there is also the possibility that the development of AGI would lead to a permanently problematic future. Notably, it might be utilized to spread and maintain the set of worths of whoever develops it. If humanity still has moral blind spots comparable to slavery in the past, AGI might irreversibly entrench it, avoiding moral progress. [146] Furthermore, AGI might help with mass surveillance and brainwashing, which might be utilized to develop a steady repressive worldwide totalitarian routine. [147] [148] There is likewise a threat for the machines themselves. If makers that are sentient or otherwise deserving of moral consideration are mass produced in the future, taking part in a civilizational course that forever neglects their well-being and interests might be an existential disaster. [149] [150] Considering how much AGI might enhance mankind's future and aid lower other existential risks, Toby Ord calls these existential dangers "an argument for continuing with due care", not for "abandoning AI". [147]
Risk of loss of control and human termination
The thesis that AI positions an existential danger for human beings, which this danger requires more attention, is controversial however has actually been endorsed in 2023 by numerous public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized extensive indifference:
So, facing possible futures of enormous benefits and risks, the specialists are undoubtedly doing whatever possible to make sure the very best outcome, right? Wrong. If an exceptional alien civilisation sent us a message saying, 'We'll arrive in a few years,' would we simply respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]
The possible fate of mankind has often been compared to the fate of gorillas threatened by human activities. The contrast states that higher intelligence permitted humankind to dominate gorillas, which are now susceptible in methods that they might not have actually expected. As a result, the gorilla has actually ended up being a threatened species, not out of malice, however merely as a civilian casualties from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to dominate mankind and that we should be mindful not to anthropomorphize them and translate their intents as we would for people. He stated that individuals will not be "clever enough to design super-intelligent machines, yet ridiculously silly to the point of offering it moronic objectives without any safeguards". [155] On the other side, the concept of crucial convergence suggests that nearly whatever their objectives, intelligent representatives will have reasons to try to make it through and get more power as intermediary actions to attaining these objectives. And that this does not require having emotions. [156]
Many scholars who are concerned about existential danger advocate for more research into resolving the "control problem" to respond to the concern: what types of safeguards, algorithms, or architectures can developers execute to increase the probability that their recursively-improving AI would continue to behave in a friendly, rather than damaging, way after it reaches superintelligence? [157] [158] Solving the control problem is complicated by the AI arms race (which could lead to a race to the bottom of safety precautions in order to release products before rivals), [159] and using AI in weapon systems. [160]
The thesis that AI can position existential threat also has critics. Skeptics typically say that AGI is unlikely in the short-term, or that issues about AGI sidetrack from other concerns connected to present AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for many individuals beyond the innovation industry, existing chatbots and LLMs are currently viewed as though they were AGI, leading to additional misconception and fear. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence changing an irrational belief in an omnipotent God. [163] Some scientists think that the interaction campaigns on AI existential risk by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at effort at regulative capture and to pump up interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and scientists, issued a joint declaration asserting that "Mitigating the threat of termination from AI must be a worldwide priority alongside other societal-scale threats such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI estimated that "80% of the U.S. labor force could have at least 10% of their work tasks impacted by the introduction of LLMs, while around 19% of workers may see at least 50% of their jobs impacted". [166] [167] They think about workplace employees to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI could have a much better autonomy, capability to make decisions, to interface with other computer tools, however likewise to control robotized bodies.
According to Stephen Hawking, the result of automation on the quality of life will depend on how the wealth will be rearranged: [142]
Everyone can delight in a life of glamorous leisure if the machine-produced wealth is shared, or the majority of people can wind up badly poor if the machine-owners effectively lobby against wealth redistribution. Up until now, the pattern seems to be towards the 2nd alternative, with innovation driving ever-increasing inequality
Elon Musk considers that the automation of society will require federal governments to adopt a universal basic earnings. [168]
See also
Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI effect AI safety - Research area on making AI safe and beneficial AI positioning - AI conformance to the intended goal A.I. Rising - 2018 movie directed by Lazar Bodroža Artificial intelligence Automated device knowing - Process of automating the application of artificial intelligence BRAIN Initiative - Collaborative public-private research study initiative revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General game playing - Ability of expert system to play different games Generative expert system - AI system efficient in creating material in action to triggers Human Brain Project - Scientific research study task Intelligence amplification - Use of info innovation to enhance human intelligence (IA). Machine principles - Moral behaviours of man-made machines. Moravec's paradox. Multi-task knowing - Solving numerous device discovering tasks at the very same time. Neural scaling law - Statistical law in machine knowing. Outline of expert system - Overview of and topical guide to artificial intelligence. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or kind of expert system. Transfer learning - Machine learning strategy. Loebner Prize - Annual AI competitors. Hardware for expert system - Hardware specifically developed and enhanced for synthetic intelligence. Weak synthetic intelligence - Form of expert system.
Notes
^ a b See below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the short article Chinese space. ^ AI founder John McCarthy composes: "we can not yet characterize in general what kinds of computational treatments we want to call intelligent. " [26] (For a conversation of some meanings of intelligence utilized by artificial intelligence researchers, see approach of artificial intelligence.). ^ The Lighthill report particularly criticized AI's "grand goals" and led the dismantling of AI research in England. [55] In the U.S., DARPA became figured out to money just "mission-oriented direct research, instead of standard undirected research study". [56] [57] ^ As AI creator John McCarthy composes "it would be a fantastic relief to the rest of the workers in AI if the innovators of brand-new basic formalisms would reveal their hopes in a more safeguarded kind than has often held true." [61] ^ In "Mind Children" [122] 1015 cps is used. More recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As defined in a standard AI book: "The assertion that machines could perhaps act smartly (or, possibly much better, act as if they were smart) is called the 'weak AI' hypothesis by philosophers, and the assertion that devices that do so are in fact believing (as opposed to imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to perform a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to make sure that artificial basic intelligence advantages all of mankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new objective is developing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were recognized as being active in 2020. ^ a b c "AI timelines: What do specialists in synthetic intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton gives up Google and alerts of danger ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can avoid the bad actors from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change modifications you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The genuine danger is not AI itself but the way we release it. ^ "Impressed by expert system? Experts say AGI is coming next, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could present existential dangers to humankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last development that humanity requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the threat of extinction from AI need to be a global top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts warn of danger of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from creating devices that can outthink us in basic methods. ^ LeCun, Yann (June 2023). "AGI does not provide an existential risk". Medium. There is no factor to fear AI as an existential threat. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "device intelligence with the complete variety of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is changing our world - it is on all of us to make sure that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of smart characteristics is based on the topics covered by significant AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we believe: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reevaluated: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reevaluated: The principle of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists dispute whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar test to AP Biology. Here's a list of tough tests both AI versions have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended checking an AI chatbot's ability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York City Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software application engineers avoided the term expert system for worry of being deemed wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of machine intelligence: Despite development in device intelligence, artificial general intelligence is still a major difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not become a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic artificial intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us paradise or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future development in synthetic intelligence: A survey of skilled viewpoint. In Fundamental concerns of synthetic intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as clever as Siri - but a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're entering the AI golden zone between narrow and basic AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are currently seeing an early example of an AGI system in the just recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is arguable, but the consensus is that it is not AGI. ... If nothing else, GPT-3 informs us there is a middle ground in between narrow and general AI. ^ Quach, Katyanna. "A designer developed an AI chatbot using GPT-3 that assisted a man speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can carry out over 600 jobs, from playing games to managing robotics", TechCrunch, archived from the original on 16 June 2022, recovered 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might measure up to human intelligence in 'just a few years,' says CEO of Google's main A.I. research study lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI might pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody appears to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study job maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A vast array of views in current research, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer system might become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (quoted in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (quoted in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for curiosity by the field about why a program behaves the way it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the company's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense surpass benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Gain from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, dangers, methods (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that people will destroy ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security threat' to Australia, Senate inquiry says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the ramifications of expert system - but are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The fascinating Facebook dispute in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The fascinating Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI risk: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report alerts". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over danger postured but expert system can not be overlooked". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring fears over AI, caution researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder states huge tech is lying about AI extinction danger". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: equipifieds.com An early take a look at the labor market impact potential of large language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of workers could see their jobs impacted by AI. These are the jobs most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we require universal basic income since 'in the future, physical work will be an option'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Look For Expert System. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial general intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Perspective, archived from the original on 17 August 2007, retrieved 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The ultimate effort is to make computer system programs that can resolve problems and achieve objectives in the world along with people. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, recovered 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, obtained 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York City: Oxford University Press, archived from the original on 25 July 2009, obtained 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, obtained 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, recovered 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - by means of ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, retrieved 4 September 2013 - by means of ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, retrieved 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what might be called "Dyson's Law") that "Any system basic adequate to be easy to understand will not be made complex enough to behave smartly, while any system complicated enough to act intelligently will be too made complex to understand." (p. 197.) Computer scientist Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead easy stupid. They work, but they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Will" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what distinguishes us from makers. For biological creatures, reason and function come from acting in the world and experiencing the repercussions. Expert systems - disembodied, strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically anticipate that those who hope to get abundant from AI are going to have the interests of the rest of us close at heart,' ... writes [Gary Marcus] 'We can't count on governments driven by campaign financing contributions [from tech business] to press back.' ... Marcus details the needs that residents ought to make from their federal governments and the tech business. They consist of transparency on how AI systems work; payment for people if their information [are] utilized to train LLMs (big language design) s and the right to authorization to this usage; and the capability to hold tech companies liable for the harms they cause by removing Section 230, imposing money penalites, and passing stricter product liability laws ... Marcus also recommends ... that a brand-new, AI-specific federal firm, akin to the FDA, the FCC, or the FTC, might supply the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... suggests ... establish [ing] an expert licensing routine for engineers that would function in a comparable method to medical licenses, malpractice matches, and the Hippocratic oath in medication. 'What if, like physicians,' she asks ..., 'AI engineers also promised to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in artificial intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has stymied human beings for decades, reveals the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competition has revealed that although NLP (natural-language processing) models are capable of extraordinary tasks, their abilities are very much limited by the quantity of context they receive. This [...] might cause [troubles] for researchers who wish to use them to do things such as evaluate ancient languages. In some cases, there are couple of historic records on long-gone civilizations to serve as training information for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to generate fake videos identical from genuine ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean sensible videos produced utilizing expert system that really trick individuals, then they barely exist. The phonies aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in basic, running in our media as counterfeited proof. Their function better resembles that of cartoons, specifically smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We need to avoid humanizing machine-learning models used in clinical research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the newest, buzziest systems of synthetic basic intelligence are stymmied by the exact same old issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, presented and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead cops to ignore inconsistent evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but revealed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at jobs that need genuine humanlike reasoning or an understanding of the physical and social world ... ChatGPT seemed unable to reason realistically and tried to count on its vast database of ... realities stemmed from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are effective but unreliable. Rules-based systems can not handle circumstances their programmers did not prepare for. Learning systems are restricted by the information on which they were trained. AI failures have already resulted in tragedy. Advanced autopilot features in cars and utahsyardsale.com trucks, although they perform well in some circumstances, have actually driven cars and trucks without warning into trucks, concrete barriers, and parked cars and trucks. In the wrong circumstance, AI systems go from supersmart to superdumb in an instant. When an opponent is trying to manipulate and hack an AI system, the threats are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by brand-new innovations but rely on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.