Artificial General Intelligence
Artificial basic intelligence (AGI) is a type of synthetic intelligence (AI) that matches or surpasses human cognitive abilities throughout a broad variety of cognitive tasks. This contrasts with narrow AI, which is limited to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that considerably goes beyond human cognitive capabilities. AGI is thought about among the definitions of strong AI.
Creating AGI is a primary objective of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 study determined 72 active AGI research study and advancement projects across 37 nations. [4]
The timeline for achieving AGI remains a subject of continuous dispute among scientists and specialists. Since 2023, some argue that it might be possible in years or decades; others maintain it might take a century or longer; a minority think it may never be accomplished; and another minority declares that it is already here. [5] [6] Notable AI scientist Geoffrey Hinton has actually revealed concerns about the rapid development towards AGI, recommending it might be achieved faster than numerous expect. [7]
There is dispute on the precise definition of AGI and concerning whether modern big language designs (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common subject in sci-fi and futures studies. [9] [10]
Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many professionals on AI have actually mentioned that alleviating the danger of human termination positioned by AGI must be a worldwide concern. [14] [15] Others discover the advancement of AGI to be too remote to provide such a danger. [16] [17]
Terminology
AGI is likewise understood as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level smart AI, or general intelligent action. [21]
Some scholastic sources book the term "strong AI" for computer system programs that experience sentience or consciousness. [a] In contrast, weak AI (or narrow AI) is able to solve one particular issue but does not have general cognitive abilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the exact same sense as people. [a]
Related principles consist of synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical type of AGI that is much more usually smart than human beings, [23] while the notion of transformative AI associates with AI having a large effect on society, for example, similar to the agricultural or industrial revolution. [24]
A structure for classifying AGI in levels was proposed in 2023 by Google DeepMind scientists. They define five levels of AGI: emerging, qualified, specialist, virtuoso, and superhuman. For instance, a qualified AGI is specified as an AI that outperforms 50% of experienced adults in a wide variety of non-physical jobs, and a superhuman AGI (i.e. an artificial superintelligence) is similarly specified but with a threshold of 100%. They think about large language models like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have been proposed. Among the leading propositions is the Turing test. However, there are other widely known meanings, and some scientists disagree with the more popular approaches. [b]
Intelligence traits
Researchers normally hold that intelligence is required to do all of the following: [27]
factor, usage technique, fix puzzles, and make judgments under uncertainty
represent understanding, consisting of sound judgment understanding
plan
find out
- communicate in natural language
- if needed, integrate these abilities in completion of any offered objective
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and decision making) consider additional qualities such as creativity (the capability to form unique psychological images and concepts) [28] and autonomy. [29]
Computer-based systems that exhibit many of these capabilities exist (e.g. see computational imagination, automated thinking, decision assistance system, robotic, evolutionary calculation, intelligent agent). There is dispute about whether contemporary AI systems have them to a sufficient degree.
Physical traits
Other capabilities are considered desirable in smart systems, as they might impact intelligence or aid in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, and so on), and - the ability to act (e.g. move and manipulate items, modification location to check out, etc).
This consists of the ability to find and react to hazard. [31]
Although the capability to sense (e.g. see, hear, etc) and the ability to act (e.g. move and manipulate things, modification area to explore, and so on) can be desirable for some smart systems, [30] these physical abilities are not strictly needed for an entity to qualify as AGI-particularly under the thesis that big language designs (LLMs) might currently be or become AGI. Even from a less optimistic viewpoint on LLMs, there is no firm requirement for an AGI to have a human-like kind; being a silicon-based computational system suffices, provided it can process input (language) from the external world in place of human senses. This interpretation aligns with the understanding that AGI has never been proscribed a particular physical personification and therefore does not demand a capability for mobility or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to confirm human-level AGI have been considered, consisting of: [33] [34]
The concept of the test is that the device needs to try and pretend to be a male, by answering concerns put to it, and it will only pass if the pretence is fairly convincing. A considerable portion of a jury, who ought to not be expert about machines, should be taken in by the pretence. [37]
AI-complete problems
An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to resolve it, one would need to carry out AGI, due to the fact that the option is beyond the capabilities of a purpose-specific algorithm. [47]
There are numerous problems that have actually been conjectured to need general intelligence to solve as well as human beings. Examples consist of computer vision, natural language understanding, and handling unanticipated scenarios while resolving any real-world issue. [48] Even a specific task like translation needs a device to read and compose in both languages, follow the author's argument (reason), understand the context (understanding), and consistently recreate the author's initial intent (social intelligence). All of these issues need to be resolved all at once in order to reach human-level machine efficiency.
However, a number of these tasks can now be performed by modern-day large language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on numerous standards for reading comprehension and visual reasoning. [49]
History
Classical AI
Modern AI research study began in the mid-1950s. [50] The first generation of AI scientists were convinced that synthetic basic intelligence was possible which it would exist in just a couple of decades. [51] AI leader Herbert A. Simon composed in 1965: "machines will be capable, within twenty years, of doing any work a man can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they could produce by the year 2001. AI leader Marvin Minsky was an expert [53] on the task of making HAL 9000 as realistic as possible according to the consensus forecasts of the time. He stated in 1967, "Within a generation ... the issue of producing 'synthetic intelligence' will substantially be fixed". [54]
Several classical AI tasks, bphomesteading.com such as Doug Lenat's Cyc task (that began in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it became apparent that scientists had grossly ignored the difficulty of the project. Funding firms ended up being skeptical of AGI and put researchers under increasing pressure to produce useful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "continue a casual discussion". [58] In reaction to this and the success of expert systems, both market and federal government pumped money into the field. [56] [59] However, confidence in AI spectacularly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never satisfied. [60] For the 2nd time in 20 years, AI scientists who predicted the impending accomplishment of AGI had been mistaken. By the 1990s, AI researchers had a credibility for making vain promises. They became unwilling to make predictions at all [d] and prevented reference of "human level" synthetic intelligence for fear of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI accomplished commercial success and scholastic respectability by concentrating on particular sub-problems where AI can produce proven outcomes and business applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the innovation industry, and research in this vein is greatly funded in both academic community and industry. Since 2018 [upgrade], advancement in this field was considered an emerging trend, and a mature stage was anticipated to be reached in more than ten years. [64]
At the millenium, numerous mainstream AI scientists [65] hoped that strong AI might be developed by combining programs that resolve various sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up route to artificial intelligence will one day satisfy the traditional top-down path more than half method, ready to offer the real-world proficiency and the commonsense knowledge that has been so frustratingly elusive in reasoning programs. Fully smart makers will result when the metaphorical golden spike is driven uniting the 2 efforts. [65]
However, even at the time, this was disputed. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by mentioning:
The expectation has actually frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is truly only one feasible path from sense to symbols: from the ground up. A free-floating symbolic level like the software level of a computer will never be reached by this path (or vice versa) - nor is it clear why we ought to even attempt to reach such a level, because it appears arriving would simply amount to uprooting our symbols from their intrinsic meanings (thereby simply minimizing ourselves to the practical equivalent of a programmable computer system). [66]
Modern synthetic basic intelligence research
The term "synthetic general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a discussion of the implications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the ability to satisfy goals in a wide variety of environments". [68] This kind of AGI, identified by the ability to maximise a mathematical meaning of intelligence instead of exhibit human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The first summertime school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was provided in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and featuring a variety of visitor lecturers.
As of 2023 [update], a small number of computer researchers are active in AGI research study, and numerous contribute to a series of AGI conferences. However, progressively more scientists are interested in open-ended knowing, [76] [77] which is the concept of allowing AI to continually discover and innovate like human beings do.
Feasibility
As of 2023, the development and potential accomplishment of AGI remains a topic of intense argument within the AI neighborhood. While standard consensus held that AGI was a far-off goal, current advancements have actually led some scientists and market figures to claim that early forms of AGI may already exist. [78] AI leader Herbert A. Simon speculated in 1965 that "makers will be capable, within twenty years, of doing any work a guy can do". This prediction stopped working to come true. Microsoft co-founder Paul Allen believed that such intelligence is not likely in the 21st century because it would require "unforeseeable and essentially unforeseeable advancements" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between contemporary computing and human-level synthetic intelligence is as broad as the gulf in between current space flight and useful faster-than-light spaceflight. [80]
A more difficulty is the absence of clearness in defining what intelligence entails. Does it need awareness? Must it show the ability to set objectives along with pursue them? Is it purely a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are centers such as planning, thinking, and causal understanding needed? Does intelligence require clearly replicating the brain and its particular professors? Does it require emotions? [81]
Most AI scientists believe strong AI can be accomplished in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of achieving strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be achieved, however that today level of development is such that a date can not precisely be forecasted. [84] AI professionals' views on the expediency of AGI wax and wane. Four surveys carried out in 2012 and 2013 recommended that the typical quote among experts for when they would be 50% confident AGI would show up was 2040 to 2050, depending on the poll, with the mean being 2081. Of the specialists, 16.5% answered with "never ever" when asked the exact same question but with a 90% self-confidence instead. [85] [86] Further current AGI progress factors to consider can be found above Tests for validating human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year amount of time there is a strong bias towards anticipating the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They analyzed 95 predictions made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers published a comprehensive evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, our company believe that it might reasonably be viewed as an early (yet still insufficient) version of a synthetic basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outperforms 99% of people on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a significant level of basic intelligence has actually already been achieved with frontier models. They wrote that hesitation to this view comes from 4 main factors: a "healthy apprehension about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "devotion to human (or biological) exceptionalism", or a "concern about the economic implications of AGI". [91]
2023 likewise marked the introduction of large multimodal designs (large language models efficient in processing or producing multiple methods such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the first of a series of designs that "invest more time thinking before they respond". According to Mira Murati, this capability to think before responding represents a brand-new, additional paradigm. It enhances design outputs by investing more computing power when generating the response, whereas the model scaling paradigm improves outputs by increasing the model size, training information and training calculate power. [93] [94]
An OpenAI employee, Vahid Kazemi, declared in 2024 that the company had attained AGI, specifying, "In my opinion, we have already attained AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "better than a lot of human beings at most jobs." He also resolved criticisms that large language designs (LLMs) merely follow predefined patterns, comparing their knowing procedure to the clinical approach of observing, hypothesizing, and verifying. These statements have actually sparked argument, as they rely on a broad and non-traditional meaning of AGI-traditionally comprehended as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's models demonstrate exceptional flexibility, they might not completely fulfill this requirement. Notably, Kazemi's comments came quickly after OpenAI eliminated "AGI" from the terms of its collaboration with Microsoft, prompting speculation about the company's strategic objectives. [95]
Timescales
Progress in artificial intelligence has actually traditionally gone through durations of quick development separated by periods when development appeared to stop. [82] Ending each hiatus were basic advances in hardware, software or both to develop space for further progress. [82] [98] [99] For example, the hardware available in the twentieth century was not sufficient to carry out deep knowing, which requires great deals of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that price quotes of the time needed before a truly versatile AGI is built vary from 10 years to over a century. Since 2007 [upgrade], the consensus in the AGI research study neighborhood seemed to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was possible. [103] Mainstream AI scientists have actually offered a wide variety of viewpoints on whether development will be this rapid. A 2012 meta-analysis of 95 such opinions discovered a bias towards anticipating that the beginning of AGI would take place within 16-26 years for modern and historic forecasts alike. That paper has been criticized for how it categorized viewpoints as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, considerably better than the second-best entry's rate of 26.3% (the conventional approach utilized a weighted sum of ratings from various pre-defined classifiers). [105] AlexNet was related to as the initial ground-breaker of the existing deep knowing wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on openly offered and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old kid in first grade. A grownup pertains to about 100 on average. Similar tests were performed in 2014, with the IQ score reaching an optimum value of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language model capable of performing numerous varied tasks without specific training. According to Gary Grossman in a VentureBeat short article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI requested changes to the chatbot to adhere to their security guidelines; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system capable of carrying out more than 600 various tasks. [110]
In 2023, Microsoft Research published a study on an early variation of OpenAI's GPT-4, competing that it exhibited more general intelligence than previous AI models and showed human-level performance in tasks covering multiple domains, such as mathematics, coding, and law. This research stimulated an argument on whether GPT-4 might be thought about an early, incomplete version of artificial basic intelligence, stressing the requirement for further exploration and assessment of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton mentioned that: [112]
The concept that this stuff could actually get smarter than people - a few people believed that, [...] But many people thought it was method off. And I thought it was way off. I believed it was 30 to 50 years or even longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis likewise stated that "The development in the last few years has been quite amazing", which he sees no factor why it would slow down, expecting AGI within a decade or even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within five years, AI would be capable of passing any test a minimum of as well as people. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI staff member, estimated AGI by 2027 to be "strikingly possible". [115]
Whole brain emulation
While the development of transformer models like in ChatGPT is thought about the most promising course to AGI, [116] [117] whole brain emulation can function as an alternative method. With entire brain simulation, a brain design is constructed by scanning and mapping a biological brain in detail, and then copying and mimicing it on a computer system or another computational gadget. The simulation model need to be adequately loyal to the initial, so that it behaves in practically the very same method as the initial brain. [118] Whole brain emulation is a type of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research purposes. It has been discussed in expert system research study [103] as a technique to strong AI. Neuroimaging technologies that could deliver the required detailed understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of adequate quality will appear on a comparable timescale to the computing power needed to replicate it.
Early approximates
For low-level brain simulation, an extremely powerful cluster of computers or GPUs would be required, offered the enormous amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by the adult years. Estimates vary for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based upon an easy switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at numerous estimates for the hardware required to equal the human brain and embraced a figure of 1016 computations per 2nd (cps). [e] (For comparison, if a "calculation" was comparable to one "floating-point operation" - a step used to rate current supercomputers - then 1016 "calculations" would be equivalent to 10 petaFLOPS, achieved in 2011, while 1018 was achieved in 2022.) He utilized this figure to forecast the required hardware would be offered sometime in between 2015 and 2025, if the exponential development in computer system power at the time of composing continued.
Current research study
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has actually developed an especially comprehensive and openly available atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based approaches
The synthetic nerve cell model assumed by Kurzweil and used in numerous existing synthetic neural network applications is basic compared to biological nerve cells. A brain simulation would likely have to capture the comprehensive cellular behaviour of biological neurons, presently understood only in broad summary. The overhead introduced by complete modeling of the biological, chemical, and physical details of neural behaviour (especially on a molecular scale) would require computational powers numerous orders of magnitude bigger than Kurzweil's quote. In addition, the price quotes do not represent glial cells, which are known to play a role in cognitive procedures. [125]
A basic criticism of the simulated brain method derives from embodied cognition theory which asserts that human embodiment is a necessary aspect of human intelligence and is needed to ground significance. [126] [127] If this theory is appropriate, any completely functional brain model will need to include more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an option, however it is unknown whether this would suffice.
Philosophical point of view
"Strong AI" as specified in viewpoint
In 1980, philosopher John Searle created the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference in between 2 hypotheses about synthetic intelligence: [f]
Strong AI hypothesis: An artificial intelligence system can have "a mind" and "awareness". Weak AI hypothesis: An artificial intelligence system can (only) imitate it thinks and has a mind and consciousness.
The very first one he called "strong" due to the fact that it makes a stronger declaration: it assumes something unique has actually happened to the maker that surpasses those capabilities that we can check. The behaviour of a "weak AI" maker would be precisely similar to a "strong AI" maker, however the latter would also have subjective mindful experience. This use is likewise common in academic AI research and textbooks. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to suggest "human level synthetic basic intelligence". [102] This is not the like Searle's strong AI, unless it is presumed that consciousness is needed for human-level AGI. Academic thinkers such as Searle do not think that holds true, and to most expert system scientists the concern is out-of-scope. [130]
Mainstream AI is most thinking about how a program acts. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can behave as if it has a mind, then there is no need to understand if it in fact has mind - certainly, there would be no method to inform. For AI research study, Searle's "weak AI hypothesis" is comparable to the statement "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for approved, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are two various things.
Consciousness
Consciousness can have numerous meanings, and some elements play considerable functions in sci-fi and the ethics of artificial intelligence:
Sentience (or "extraordinary consciousness"): The ability to "feel" understandings or emotions subjectively, as opposed to the capability to factor about perceptions. Some theorists, such as David Chalmers, utilize the term "awareness" to refer solely to remarkable consciousness, which is roughly comparable to life. [132] Determining why and how subjective experience arises is referred to as the difficult issue of consciousness. [133] Thomas Nagel discussed in 1974 that it "seems like" something to be mindful. If we are not mindful, then it doesn't feel like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer claimed that the business's AI chatbot, LaMDA, had accomplished sentience, though this claim was commonly disputed by other specialists. [135]
Self-awareness: To have conscious awareness of oneself as a separate person, specifically to be purposely familiar with one's own thoughts. This is opposed to merely being the "subject of one's believed"-an os or debugger has the ability to be "familiar with itself" (that is, to represent itself in the very same way it represents everything else)-but this is not what people typically mean when they utilize the term "self-awareness". [g]
These characteristics have an ethical measurement. AI sentience would provide rise to issues of well-being and legal security, likewise to animals. [136] Other elements of consciousness associated to cognitive capabilities are likewise pertinent to the idea of AI rights. [137] Finding out how to integrate innovative AI with existing legal and social structures is an emerging issue. [138]
Benefits
AGI might have a wide array of applications. If oriented towards such goals, AGI could assist mitigate different issues worldwide such as appetite, poverty and illness. [139]
AGI might enhance efficiency and effectiveness in most jobs. For example, in public health, AGI could accelerate medical research study, especially against cancer. [140] It might look after the senior, [141] and equalize access to rapid, top quality medical diagnostics. It could provide fun, cheap and customized education. [141] The need to work to subsist could end up being obsolete if the wealth produced is correctly redistributed. [141] [142] This also raises the concern of the location of people in a significantly automated society.
AGI might also assist to make rational choices, and to anticipate and prevent catastrophes. It might also assist to gain the advantages of possibly devastating innovations such as nanotechnology or climate engineering, while avoiding the associated risks. [143] If an AGI's primary goal is to avoid existential catastrophes such as human termination (which could be tough if the Vulnerable World Hypothesis ends up being true), [144] it could take steps to dramatically reduce the dangers [143] while reducing the effect of these measures on our quality of life.
Risks
Existential threats
AGI might represent several types of existential threat, which are threats that threaten "the early extinction of Earth-originating smart life or the long-term and drastic destruction of its capacity for desirable future development". [145] The risk of human termination from AGI has been the topic of numerous disputes, however there is likewise the possibility that the advancement of AGI would lead to a completely flawed future. Notably, it could be utilized to spread out and protect the set of worths of whoever develops it. If mankind still has moral blind spots comparable to slavery in the past, AGI might irreversibly entrench it, preventing moral progress. [146] Furthermore, AGI could assist in mass monitoring and brainwashing, which might be utilized to produce a stable repressive around the world totalitarian routine. [147] [148] There is also a danger for the devices themselves. If makers that are sentient or otherwise worthy of ethical factor to consider are mass created in the future, participating in a civilizational course that indefinitely ignores their well-being and interests might be an existential disaster. [149] [150] Considering just how much AGI could improve humankind's future and help in reducing other existential threats, Toby Ord calls these existential risks "an argument for continuing with due caution", not for "deserting AI". [147]
Risk of loss of control and human termination
The thesis that AI positions an existential danger for humans, which this threat needs more attention, is questionable but has been backed in 2023 by lots of public figures, AI researchers and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed extensive indifference:
So, dealing with possible futures of enormous benefits and threats, the experts are undoubtedly doing everything possible to guarantee the best outcome, right? Wrong. If a superior alien civilisation sent us a message saying, 'We'll arrive in a couple of years,' would we just reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is happening with AI. [153]
The prospective fate of mankind has actually often been compared to the fate of gorillas threatened by human activities. The contrast specifies that greater intelligence permitted humankind to control gorillas, which are now vulnerable in manner ins which they might not have expected. As an outcome, the gorilla has become an endangered species, not out of malice, but merely as a collateral damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate humankind and that we should be cautious not to anthropomorphize them and interpret their intents as we would for people. He stated that people won't be "wise sufficient to create super-intelligent makers, yet extremely stupid to the point of offering it moronic objectives without any safeguards". [155] On the other side, the principle of crucial merging suggests that nearly whatever their goals, smart representatives will have factors to try to endure and obtain more power as intermediary steps to achieving these goals. And that this does not require having emotions. [156]
Many scholars who are worried about existential danger advocate for more research study into resolving the "control problem" to respond to the concern: what types of safeguards, algorithms, or architectures can programmers carry out to maximise the probability that their recursively-improving AI would continue to behave in a friendly, rather than damaging, manner after it reaches superintelligence? [157] [158] Solving the control issue is complicated by the AI arms race (which could lead to a race to the bottom of security preventative measures in order to launch products before competitors), [159] and using AI in weapon systems. [160]
The thesis that AI can posture existential threat also has detractors. Skeptics usually say that AGI is not likely in the short-term, or that concerns about AGI distract from other issues related to current AI. [161] Former Google fraud czar Shuman Ghosemajumder thinks about that for lots of people outside of the technology market, existing chatbots and LLMs are already viewed as though they were AGI, causing additional misconception and worry. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence changing an unreasonable belief in a supreme God. [163] Some scientists believe that the interaction campaigns on AI existential risk by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at effort at regulatory capture and to inflate interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other industry leaders and researchers, released a joint statement asserting that "Mitigating the danger of termination from AI should be an international priority along with other societal-scale dangers such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI approximated that "80% of the U.S. labor force might have at least 10% of their work jobs impacted by the intro of LLMs, while around 19% of employees may see a minimum of 50% of their jobs affected". [166] [167] They consider workplace workers to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI could have a better autonomy, ability to make choices, to user interface with other computer system tools, however also to manage robotized bodies.
According to Stephen Hawking, the result of automation on the lifestyle will depend upon how the wealth will be redistributed: [142]
Everyone can take pleasure in a life of glamorous leisure if the machine-produced wealth is shared, or the majority of people can wind up badly bad if the machine-owners effectively lobby versus wealth redistribution. So far, the pattern seems to be toward the 2nd option, with innovation driving ever-increasing inequality
Elon Musk considers that the automation of society will require governments to adopt a universal standard earnings. [168]
See likewise
Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI impact AI safety - Research area on making AI safe and useful AI alignment - AI conformance to the intended goal A.I. Rising - 2018 film directed by Lazar Bodroža Expert system Automated device knowing - Process of automating the application of artificial intelligence BRAIN Initiative - Collaborative public-private research study initiative announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General video game playing - Ability of expert system to play different games Generative expert system - AI system efficient in producing material in reaction to prompts Human Brain Project - Scientific research study project Intelligence amplification - Use of infotech to augment human intelligence (IA). Machine ethics - Moral behaviours of man-made devices. Moravec's paradox. Multi-task knowing - Solving numerous maker learning jobs at the exact same time. Neural scaling law - Statistical law in artificial intelligence. Outline of artificial intelligence - Overview of and topical guide to synthetic intelligence. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or type of expert system. Transfer learning - Artificial intelligence technique. Loebner Prize - Annual AI competitors. Hardware for expert system - Hardware specifically designed and enhanced for synthetic intelligence. Weak artificial intelligence - Form of expert system.
Notes
^ a b See below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the article Chinese space. ^ AI founder John McCarthy writes: "we can not yet define in general what kinds of computational treatments we desire to call intelligent. " [26] (For a conversation of some definitions of intelligence utilized by artificial intelligence researchers, see approach of expert system.). ^ The Lighthill report particularly slammed AI's "grand goals" and led the dismantling of AI research study in England. [55] In the U.S., DARPA became identified to money just "mission-oriented direct research study, rather than fundamental undirected research study". [56] [57] ^ As AI founder John McCarthy composes "it would be a great relief to the remainder of the employees in AI if the developers of new general formalisms would reveal their hopes in a more protected type than has often held true." [61] ^ In "Mind Children" [122] 1015 cps is used. More recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As specified in a basic AI textbook: "The assertion that machines might possibly act wisely (or, maybe better, act as if they were intelligent) is called the 'weak AI' hypothesis by theorists, and the assertion that makers that do so are in fact believing (instead of mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to perform a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to guarantee that artificial basic intelligence advantages all of humanity. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is producing synthetic general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were determined as being active in 2020. ^ a b c "AI timelines: What do professionals in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton quits Google and alerts of risk ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can prevent the bad stars from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The genuine risk is not AI itself but the way we release it. ^ "Impressed by expert system? Experts state AGI is coming next, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could present existential threats to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last invention that humankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the danger of extinction from AI ought to be an international priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists warn of danger of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from creating machines that can outthink us in general methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential risk". Medium. There is no factor to fear AI as an existential risk. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil describes strong AI as "device intelligence with the complete variety of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is transforming our world - it is on everyone to make sure that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent qualities is based on the topics covered by major AI books, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the way we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reevaluated: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reevaluated: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing everything from the bar test to AP Biology. Here's a list of challenging tests both AI versions have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested evaluating an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109. ^ "Scientist on the Set: links.gtanet.com.br An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software engineers avoided the term expert system for fear of being viewed as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of maker intelligence: Despite progress in machine intelligence, synthetic general intelligence is still a significant challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not turn into a Frankenstein's monster". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic expert system will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us paradise or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A survey of professional opinion. In Fundamental concerns of synthetic intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational function of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as wise as Siri - but a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're going into the AI twilight zone in between narrow and basic AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are already seeing an early example of an AGI system in the recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is arguable, but the consensus is that it is not AGI. ... If absolutely nothing else, GPT-3 tells us there is a middle ground in between narrow and basic AI. ^ Quach, Katyanna. "A designer developed an AI chatbot using GPT-3 that helped a guy speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can perform over 600 jobs, from playing games to managing robotics", TechCrunch, archived from the original on 16 June 2022, obtained 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could measure up to human intelligence in 'just a couple of years,' says CEO of Google's primary A.I. research lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI might pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone appears to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A vast array of views in existing research study, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How submitting our minds to a computer system may end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced estimate in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced quote in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable synthetic intelligence for interest by the field about why a program acts the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the company's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense surpass benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Gain from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, dangers, techniques (Reprinted with corrections 2017 ed.). Oxford, UK; New York City, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that people will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security risk' to Australia, Senate questions states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the implications of synthetic intelligence - however are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The remarkable Facebook dispute between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI risk: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI dangers spiralling out of control, report cautions". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over hazard positioned but expert system can not be ignored". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring worries over AI, caution scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator states huge tech is lying about AI extinction threat". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early appearance at the labor photorum.eclat-mauve.fr market effect potential of large language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of workers might see their tasks affected by AI. These are the tasks most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we require universal basic earnings due to the fact that 'in the future, manual labor will be an option'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Look For Artificial Intelligence. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial basic intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, retrieved 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, retrieved 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Perspective, archived from the initial on 17 August 2007, retrieved 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Expert System: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The supreme effort is to make computer programs that can solve issues and accomplish goals in the world as well as humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, recovered 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, obtained 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Logical Approach, New York: Oxford University Press, archived from the initial on 25 July 2009, obtained 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, retrieved 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, recovered 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, obtained 4 September 2013 - through ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, recovered 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what may be called "Dyson's Law") that "Any system basic enough to be understandable will not be made complex enough to act intelligently, while any system complicated enough to act smartly will be too made complex to comprehend." (p. 197.) Computer scientist Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead simple stupid. They work, however they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, obtained 25 July 2010. Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from devices. For biological creatures, reason and purpose originate from acting on the planet and experiencing the consequences. Expert systems - disembodied, strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically expect that those who wish to get abundant from AI are going to have the interests of the rest of us close at heart,' ... writes [Gary Marcus] 'We can't depend on federal governments driven by campaign finance contributions [from tech business] to press back.' ... Marcus information the demands that people should make of their federal governments and the tech business. They consist of openness on how AI systems work; payment for people if their information [are] utilized to train LLMs (large language model) s and the right to grant this use; and the ability to hold tech business accountable for the harms they trigger by eliminating Section 230, enforcing money penalites, and passing stricter item liability laws ... Marcus likewise recommends ... that a brand-new, AI-specific federal company, comparable to the FDA, the FCC, or the FTC, may provide the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... recommends ... establish [ing] a professional licensing program for engineers that would operate in a comparable method to medical licenses, malpractice fits, and the Hippocratic oath in medicine. 'What if, like medical professionals,' she asks ..., 'AI engineers also vowed to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually stumped humans for decades, reveals the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competition has exposed that although NLP (natural-language processing) models are capable of incredible accomplishments, their capabilities are quite limited by the quantity of context they receive. This [...] could cause [troubles] for researchers who wish to use them to do things such as analyze ancient languages. In some cases, there are couple of historic records on long-gone civilizations to work as training information for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to generate phony videos identical from real ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean sensible videos produced using synthetic intelligence that really deceive individuals, then they hardly exist. The phonies aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in basic, operating in our media as counterfeited proof. Their role better resembles that of animations, especially smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We need to avoid humanizing machine-learning designs used in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a device a conversation?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the newest, buzziest systems of synthetic general intelligence are stymmied by the same old issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, obtained 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, presented and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead cops to disregard inconsistent evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test however revealed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at tasks that require genuine humanlike reasoning or an understanding of the physical and social world ... ChatGPT seemed not able to factor rationally and tried to depend on its huge database of ... truths originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are powerful but unreliable. Rules-based systems can not handle circumstances their programmers did not expect. Learning systems are restricted by the data on which they were trained. AI failures have already resulted in disaster. Advanced autopilot functions in vehicles, although they carry out well in some scenarios, have actually driven cars without alerting into trucks, concrete barriers, and parked cars. In the incorrect scenario, AI systems go from supersmart to superdumb in an instant. When an enemy is attempting to manipulate and hack an AI system, the risks are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by brand-new technologies but depend on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.