Artificial General Intelligence
Artificial basic intelligence (AGI) is a type of expert system (AI) that matches or goes beyond human cognitive capabilities across a large range of cognitive jobs. This contrasts with narrow AI, which is restricted to particular tasks. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that significantly exceeds human cognitive abilities. AGI is considered among the definitions of strong AI.
Creating AGI is a primary objective of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 survey identified 72 active AGI research and development tasks across 37 nations. [4]
The timeline for attaining AGI remains a subject of ongoing dispute amongst researchers and professionals. As of 2023, some argue that it might be possible in years or decades; others preserve it may take a century or longer; a minority think it might never ever be attained; and pipewiki.org another minority declares that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has actually expressed issues about the quick development towards AGI, suggesting it could be accomplished earlier than lots of anticipate. [7]
There is dispute on the precise definition of AGI and relating to whether contemporary big language designs (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a common subject in sci-fi and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many specialists on AI have actually stated that alleviating the risk of human extinction postured by AGI needs to be an international top priority. [14] [15] Others find the advancement of AGI to be too remote to provide such a risk. [16] [17]
Terminology
AGI is likewise understood as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or basic intelligent action. [21]
Some scholastic sources reserve the term "strong AI" for computer programs that experience life or awareness. [a] In contrast, weak AI (or narrow AI) has the ability to fix one particular problem but lacks basic cognitive abilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the very same sense as human beings. [a]
Related principles include artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a theoretical kind of AGI that is far more typically intelligent than people, [23] while the idea of transformative AI connects to AI having a large effect on society, for example, comparable to the agricultural or industrial revolution. [24]
A framework for classifying AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify five levels of AGI: emerging, skilled, professional, virtuoso, and superhuman. For example, a competent AGI is defined as an AI that surpasses 50% of skilled adults in a vast array of non-physical jobs, and a superhuman AGI (i.e. an artificial superintelligence) is similarly specified but with a threshold of 100%. They think about big language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have been proposed. Among the leading propositions is the Turing test. However, there are other well-known meanings, and some researchers disagree with the more popular approaches. [b]
Intelligence characteristics
Researchers generally hold that intelligence is required to do all of the following: [27]
factor, use method, fix puzzles, and make judgments under unpredictability
represent understanding, including typical sense understanding
plan
find out
- interact in natural language
- if necessary, incorporate these abilities in conclusion of any provided goal
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and decision making) think about extra traits such as imagination (the ability to form novel mental images and principles) [28] and autonomy. [29]
Computer-based systems that display many of these abilities exist (e.g. see computational creativity, automated thinking, suvenir51.ru decision assistance system, robotic, evolutionary calculation, intelligent agent). There is argument about whether modern-day AI systems have them to a sufficient degree.
Physical traits
Other capabilities are thought about desirable in intelligent systems, as they may affect intelligence or help in its expression. These consist of: [30]
- the ability to sense (e.g. see, hear, and so on), and - the capability to act (e.g. move and control items, change place to check out, and so on).
This consists of the capability to find and react to risk. [31]
Although the ability to sense (e.g. see, hear, etc) and the ability to act (e.g. move and chessdatabase.science control objects, modification location to check out, and so on) can be desirable for some intelligent systems, [30] these physical capabilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that big language models (LLMs) might already be or end up being AGI. Even from a less optimistic viewpoint on LLMs, there is no firm requirement for an AGI to have a human-like kind; being a silicon-based computational system is enough, offered it can process input (language) from the external world in place of human senses. This analysis aligns with the understanding that AGI has actually never been proscribed a particular physical personification and therefore does not demand a capacity for mobility or traditional "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to validate human-level AGI have actually been considered, including: [33] [34]
The idea of the test is that the machine needs to attempt and pretend to be a guy, chessdatabase.science by responding to concerns put to it, and it will just pass if the pretence is reasonably convincing. A considerable part of a jury, who need to not be expert about machines, need to be taken in by the pretence. [37]
AI-complete issues
An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to fix it, one would need to carry out AGI, since the service is beyond the abilities of a purpose-specific algorithm. [47]
There are lots of issues that have been conjectured to need general intelligence to resolve in addition to human beings. Examples consist of computer vision, natural language understanding, and dealing with unforeseen situations while fixing any real-world issue. [48] Even a particular task like translation needs a machine to read and write in both languages, follow the author's argument (factor), understand the context (understanding), and faithfully replicate the author's initial intent (social intelligence). All of these problems need to be resolved all at once in order to reach human-level maker performance.
However, a number of these jobs can now be performed by contemporary big language models. According to Stanford University's 2024 AI index, AI has reached human-level efficiency on many standards for reading comprehension and visual reasoning. [49]
History
Classical AI
Modern AI research study began in the mid-1950s. [50] The very first generation of AI researchers were encouraged that artificial basic intelligence was possible which it would exist in just a few years. [51] AI leader Herbert A. Simon wrote in 1965: "machines will be capable, within twenty years, of doing any work a male can do." [52]
Their predictions were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they might produce by the year 2001. AI leader Marvin Minsky was a specialist [53] on the task of making HAL 9000 as reasonable as possible according to the consensus forecasts of the time. He stated in 1967, "Within a generation ... the issue of producing 'expert system' will substantially be solved". [54]
Several classical AI tasks, such as Doug Lenat's Cyc task (that began in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it became apparent that scientists had actually grossly undervalued the difficulty of the job. Funding firms ended up being hesitant of AGI and put scientists under increasing pressure to produce helpful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "bring on a table talk". [58] In reaction to this and the success of professional systems, both industry and federal government pumped money into the field. [56] [59] However, self-confidence in AI marvelously collapsed in the late 1980s, championsleage.review and the objectives of the Fifth Generation Computer Project were never satisfied. [60] For the second time in 20 years, AI researchers who anticipated the imminent achievement of AGI had been misinterpreted. By the 1990s, AI scientists had a credibility for making vain promises. They became unwilling to make forecasts at all [d] and prevented reference of "human level" synthetic intelligence for worry of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI achieved industrial success and academic respectability by concentrating on particular sub-problems where AI can produce verifiable outcomes and business applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now utilized extensively throughout the innovation market, and research study in this vein is greatly moneyed in both academic community and industry. As of 2018 [upgrade], development in this field was considered an emerging trend, and a fully grown phase was expected to be reached in more than ten years. [64]
At the turn of the century, numerous traditional AI researchers [65] hoped that strong AI could be established by combining programs that resolve different sub-problems. Hans Moravec composed in 1988:
I am positive that this bottom-up route to synthetic intelligence will one day meet the conventional top-down route over half method, ready to offer the real-world competence and the commonsense knowledge that has been so frustratingly evasive in reasoning programs. Fully smart makers will result when the metaphorical golden spike is driven uniting the two efforts. [65]
However, even at the time, this was disputed. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by stating:
The expectation has often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is actually only one viable path from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer will never ever be reached by this path (or vice versa) - nor is it clear why we ought to even attempt to reach such a level, since it looks as if getting there would just total up to uprooting our signs from their intrinsic significances (thus merely reducing ourselves to the practical equivalent of a programmable computer system). [66]
Modern synthetic basic intelligence research
The term "synthetic general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the ramifications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the capability to satisfy goals in a broad range of environments". [68] This type of AGI, defined by the capability to increase a mathematical definition of intelligence instead of exhibit human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The very first summertime school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was offered in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and including a number of visitor speakers.
Since 2023 [upgrade], a little number of computer system scientists are active in AGI research study, and lots of contribute to a series of AGI conferences. However, increasingly more researchers are interested in open-ended knowing, [76] [77] which is the concept of permitting AI to continuously learn and innovate like humans do.
Feasibility
Since 2023, the development and prospective achievement of AGI stays a topic of extreme debate within the AI community. While standard consensus held that AGI was a far-off goal, current advancements have led some researchers and market figures to declare that early types of AGI might currently exist. [78] AI pioneer Herbert A. Simon hypothesized in 1965 that "machines will be capable, within twenty years, of doing any work a man can do". This prediction failed to come true. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century due to the fact that it would need "unforeseeable and basically unforeseeable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between modern computing and human-level expert system is as wide as the gulf in between existing area flight and useful faster-than-light spaceflight. [80]
An additional difficulty is the lack of clearness in specifying what intelligence requires. Does it need awareness? Must it display the capability to set objectives in addition to pursue them? Is it simply a matter of scale such that if model sizes increase adequately, intelligence will emerge? Are centers such as planning, reasoning, and causal understanding needed? Does intelligence need explicitly duplicating the brain and its particular professors? Does it need emotions? [81]
Most AI researchers think strong AI can be accomplished in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of accomplishing strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be achieved, however that today level of development is such that a date can not accurately be forecasted. [84] AI experts' views on the expediency of AGI wax and subside. Four polls conducted in 2012 and 2013 suggested that the typical estimate among specialists for when they would be 50% confident AGI would get here was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the professionals, 16.5% answered with "never ever" when asked the same question but with a 90% self-confidence rather. [85] [86] Further existing AGI development factors to consider can be discovered above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year amount of time there is a strong predisposition towards predicting the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They evaluated 95 predictions made in between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft researchers released an in-depth evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we think that it could reasonably be seen as an early (yet still insufficient) version of an artificial basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outshines 99% of human beings on the Torrance tests of creative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of basic intelligence has currently been attained with frontier models. They wrote that reluctance to this view comes from 4 primary reasons: a "healthy suspicion about metrics for AGI", an "ideological commitment to alternative AI theories or techniques", a "dedication to human (or biological) exceptionalism", or a "concern about the financial implications of AGI". [91]
2023 likewise marked the development of big multimodal designs (big language designs capable of processing or creating numerous techniques such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the first of a series of designs that "spend more time thinking before they respond". According to Mira Murati, this ability to think before reacting represents a brand-new, extra paradigm. It improves model outputs by spending more computing power when generating the response, whereas the model scaling paradigm improves outputs by increasing the design size, training information and training calculate power. [93] [94]
An OpenAI staff member, Vahid Kazemi, claimed in 2024 that the business had actually accomplished AGI, mentioning, "In my viewpoint, we have actually currently achieved AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "much better than a lot of people at a lot of tasks." He likewise dealt with criticisms that large language models (LLMs) merely follow predefined patterns, comparing their learning procedure to the clinical method of observing, hypothesizing, and validating. These statements have triggered debate, as they rely on a broad and unconventional definition of AGI-traditionally understood as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models show impressive adaptability, they may not totally satisfy this standard. Notably, Kazemi's remarks came quickly after OpenAI eliminated "AGI" from the regards to its collaboration with Microsoft, prompting speculation about the company's strategic intents. [95]
Timescales
Progress in artificial intelligence has traditionally gone through durations of fast development separated by durations when progress appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software application or both to produce space for further progress. [82] [98] [99] For example, the hardware readily available in the twentieth century was not adequate to execute deep knowing, which requires big numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel says that price quotes of the time required before a genuinely flexible AGI is developed differ from ten years to over a century. Since 2007 [upgrade], the agreement in the AGI research study community appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI researchers have offered a vast array of viewpoints on whether development will be this fast. A 2012 meta-analysis of 95 such viewpoints found a bias towards forecasting that the beginning of AGI would happen within 16-26 years for contemporary and historic predictions alike. That paper has been criticized for how it categorized opinions as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, considerably much better than the second-best entry's rate of 26.3% (the traditional approach used a weighted amount of ratings from various pre-defined classifiers). [105] AlexNet was considered the preliminary ground-breaker of the current deep learning wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on openly offered and easily available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds approximately to a six-year-old child in very first grade. An adult comes to about 100 typically. Similar tests were brought out in 2014, with the IQ score reaching a maximum worth of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model efficient in carrying out numerous diverse jobs without particular training. According to Gary Grossman in a VentureBeat short article, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested for modifications to the chatbot to comply with their security standards; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system capable of performing more than 600 various jobs. [110]
In 2023, Microsoft Research published a study on an early variation of OpenAI's GPT-4, competing that it displayed more general intelligence than previous AI designs and demonstrated human-level performance in jobs spanning multiple domains, such as mathematics, coding, and law. This research study stimulated an argument on whether GPT-4 might be considered an early, insufficient version of artificial basic intelligence, emphasizing the need for additional expedition and evaluation of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton specified that: [112]
The concept that this stuff might really get smarter than people - a couple of individuals thought that, [...] But the majority of people believed it was method off. And I thought it was way off. I believed it was 30 to 50 years or even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis similarly said that "The development in the last couple of years has actually been pretty unbelievable", and that he sees no reason it would slow down, expecting AGI within a years or even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within five years, AI would can passing any test at least along with people. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI worker, approximated AGI by 2027 to be "strikingly plausible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is considered the most appealing course to AGI, [116] [117] entire brain emulation can serve as an alternative approach. With whole brain simulation, a brain model is built by scanning and mapping a biological brain in information, and after that copying and imitating it on a computer system or another computational gadget. The simulation design must be sufficiently faithful to the initial, so that it behaves in almost the very same way as the original brain. [118] Whole brain emulation is a type of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research study functions. It has actually been talked about in expert system research study [103] as a method to strong AI. Neuroimaging technologies that could deliver the necessary comprehensive understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of adequate quality will appear on a similar timescale to the computing power needed to replicate it.
Early estimates
For low-level brain simulation, an extremely effective cluster of computer systems or GPUs would be needed, offered the enormous amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on typical 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by their adult years. Estimates vary for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based on a basic switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at different quotes for the hardware required to equal the human brain and adopted a figure of 1016 computations per second (cps). [e] (For contrast, if a "calculation" was equivalent to one "floating-point operation" - a step utilized to rate current supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, accomplished in 2011, while 1018 was attained in 2022.) He used this figure to forecast the essential hardware would be available at some point in between 2015 and 2025, if the exponential growth in computer system power at the time of composing continued.
Current research study
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has established an especially detailed and openly accessible atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based approaches
The artificial nerve cell model presumed by Kurzweil and utilized in lots of existing synthetic neural network implementations is basic compared to biological nerve cells. A brain simulation would likely have to catch the comprehensive cellular behaviour of biological neurons, currently understood only in broad overview. The overhead presented by full modeling of the biological, chemical, and physical information of neural behaviour (specifically on a molecular scale) would need computational powers numerous orders of magnitude larger than Kurzweil's quote. In addition, the quotes do not account for glial cells, which are known to play a function in cognitive processes. [125]
A basic criticism of the simulated brain approach obtains from embodied cognition theory which asserts that human personification is a necessary aspect of human intelligence and is essential to ground meaning. [126] [127] If this theory is proper, any fully functional brain design will require to include more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an option, but it is unknown whether this would be adequate.
Philosophical viewpoint
"Strong AI" as specified in philosophy
In 1980, philosopher John Searle created the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference between two hypotheses about synthetic intelligence: [f]
Strong AI hypothesis: An artificial intelligence system can have "a mind" and "consciousness". Weak AI hypothesis: A synthetic intelligence system can (just) imitate it believes and has a mind and awareness.
The first one he called "strong" because it makes a more powerful declaration: it assumes something special has happened to the device that goes beyond those abilities that we can check. The behaviour of a "weak AI" maker would be exactly identical to a "strong AI" device, but the latter would likewise have subjective conscious experience. This use is likewise common in academic AI research study and books. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to indicate "human level artificial basic intelligence". [102] This is not the same as Searle's strong AI, unless it is assumed that awareness is needed for human-level AGI. Academic philosophers such as Searle do not believe that is the case, and to most synthetic intelligence scientists the question is out-of-scope. [130]
Mainstream AI is most thinking about how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can behave as if it has a mind, then there is no requirement to understand if it in fact has mind - indeed, there would be no method to inform. For AI research, Searle's "weak AI hypothesis" is equivalent to the statement "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for given, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are two various things.
Consciousness
Consciousness can have various significances, and some aspects play considerable functions in science fiction and the principles of expert system:
Sentience (or "remarkable consciousness"): The capability to "feel" perceptions or feelings subjectively, rather than the capability to reason about understandings. Some philosophers, such as David Chalmers, utilize the term "consciousness" to refer solely to sensational awareness, which is approximately equivalent to sentience. [132] Determining why and how subjective experience occurs is understood as the hard issue of awareness. [133] Thomas Nagel explained in 1974 that it "feels like" something to be conscious. If we are not conscious, then it doesn't seem like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it seem like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat appears to be mindful (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer claimed that the business's AI chatbot, LaMDA, had actually achieved life, though this claim was extensively contested by other professionals. [135]
Self-awareness: To have mindful awareness of oneself as a separate person, especially to be knowingly knowledgeable about one's own thoughts. This is opposed to simply being the "topic of one's thought"-an os or debugger is able to be "familiar with itself" (that is, to represent itself in the same way it represents everything else)-however this is not what individuals usually indicate when they utilize the term "self-awareness". [g]
These traits have an ethical measurement. AI life would trigger concerns of welfare and legal security, similarly to animals. [136] Other elements of awareness related to cognitive abilities are also pertinent to the concept of AI rights. [137] Figuring out how to integrate innovative AI with existing legal and social structures is an emergent concern. [138]
Benefits
AGI could have a variety of applications. If oriented towards such goals, AGI could help mitigate numerous issues in the world such as cravings, hardship and illness. [139]
AGI might enhance efficiency and efficiency in many tasks. For instance, in public health, AGI could accelerate medical research, notably against cancer. [140] It could look after the elderly, [141] and democratize access to fast, high-quality medical diagnostics. It could use fun, cheap and personalized education. [141] The need to work to subsist might become outdated if the wealth produced is correctly rearranged. [141] [142] This likewise raises the concern of the location of humans in a drastically automated society.
AGI might likewise help to make rational decisions, and to expect and prevent disasters. It could likewise assist to profit of potentially devastating technologies such as nanotechnology or environment engineering, while preventing the associated dangers. [143] If an AGI's main goal is to prevent existential catastrophes such as human termination (which could be difficult if the Vulnerable World Hypothesis turns out to be true), [144] it could take procedures to significantly minimize the dangers [143] while lessening the impact of these measures on our lifestyle.
Risks
Existential threats
AGI might represent multiple kinds of existential threat, which are threats that threaten "the premature termination of Earth-originating intelligent life or the irreversible and extreme destruction of its capacity for desirable future development". [145] The risk of human extinction from AGI has actually been the subject of numerous debates, however there is also the possibility that the advancement of AGI would cause a completely problematic future. Notably, it could be used to spread and preserve the set of worths of whoever establishes it. If humankind still has ethical blind areas comparable to slavery in the past, AGI may irreversibly entrench it, preventing ethical development. [146] Furthermore, AGI could assist in mass security and brainwashing, which might be utilized to create a steady repressive worldwide totalitarian program. [147] [148] There is also a danger for the makers themselves. If devices that are sentient or otherwise worthwhile of moral factor to consider are mass produced in the future, participating in a civilizational path that forever overlooks their welfare and interests could be an existential disaster. [149] [150] Considering how much AGI might enhance humanity's future and help in reducing other existential risks, Toby Ord calls these existential risks "an argument for continuing with due care", not for "abandoning AI". [147]
Risk of loss of control and human termination
The thesis that AI postures an existential risk for people, and that this threat needs more attention, is questionable but has actually been backed in 2023 by numerous public figures, AI researchers and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized extensive indifference:
So, dealing with possible futures of incalculable benefits and dangers, the specialists are definitely doing everything possible to make sure the finest result, right? Wrong. If a superior alien civilisation sent us a message saying, 'We'll arrive in a few years,' would we just reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The prospective fate of mankind has sometimes been compared to the fate of gorillas threatened by human activities. The comparison mentions that higher intelligence allowed humankind to dominate gorillas, which are now susceptible in methods that they could not have prepared for. As an outcome, the gorilla has ended up being a threatened species, not out of malice, however merely as a collateral damage from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to dominate humanity which we should take care not to anthropomorphize them and translate their intents as we would for human beings. He stated that people won't be "smart sufficient to design super-intelligent makers, yet ridiculously dumb to the point of giving it moronic objectives without any safeguards". [155] On the other side, the principle of crucial merging suggests that practically whatever their goals, intelligent representatives will have reasons to attempt to survive and get more power as intermediary steps to achieving these objectives. Which this does not need having feelings. [156]
Many scholars who are concerned about existential threat advocate for more research study into solving the "control issue" to answer the question: what types of safeguards, algorithms, or architectures can developers execute to maximise the possibility that their recursively-improving AI would continue to act in a friendly, rather than harmful, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which might cause a race to the bottom of safety preventative measures in order to launch products before rivals), [159] and making use of AI in weapon systems. [160]
The thesis that AI can present existential threat also has detractors. Skeptics generally say that AGI is not likely in the short-term, or that issues about AGI distract from other problems associated with existing AI. [161] Former Google scams czar Shuman Ghosemajumder thinks about that for many individuals beyond the innovation industry, existing chatbots and LLMs are currently perceived as though they were AGI, resulting in more misunderstanding and worry. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence replacing an illogical belief in an omnipotent God. [163] Some scientists think that the interaction projects on AI existential risk by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulatory capture and to inflate interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other industry leaders and researchers, provided a joint statement asserting that "Mitigating the danger of termination from AI ought to be an international top priority alongside other societal-scale threats such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI approximated that "80% of the U.S. labor force could have at least 10% of their work tasks affected by the introduction of LLMs, while around 19% of employees may see a minimum of 50% of their tasks impacted". [166] [167] They consider office employees to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI might have a better autonomy, capability to make choices, to interface with other computer tools, however also to manage robotized bodies.
According to Stephen Hawking, the result of automation on the lifestyle will depend on how the wealth will be rearranged: [142]
Everyone can take pleasure in a life of luxurious leisure if the machine-produced wealth is shared, or most people can wind up badly bad if the machine-owners successfully lobby against wealth redistribution. So far, the pattern appears to be towards the 2nd choice, with innovation driving ever-increasing inequality
Elon Musk thinks about that the automation of society will need federal governments to embrace a universal standard income. [168]
See likewise
Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain AI result AI safety - Research area on making AI safe and beneficial AI alignment - AI conformance to the desired objective A.I. Rising - 2018 movie directed by Lazar Bodroža Expert system Automated artificial intelligence - Process of automating the application of artificial intelligence BRAIN Initiative - Collaborative public-private research study initiative announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General game playing - Ability of expert system to play various video games Generative artificial intelligence - AI system efficient in producing material in response to prompts Human Brain Project - Scientific research job Intelligence amplification - Use of infotech to enhance human intelligence (IA). Machine principles - Moral behaviours of manufactured machines. Moravec's paradox. Multi-task knowing - Solving numerous device finding out tasks at the same time. Neural scaling law - Statistical law in artificial intelligence. Outline of expert system - Overview of and topical guide to artificial intelligence. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or form of expert system. Transfer learning - Machine knowing technique. Loebner Prize - Annual AI competition. Hardware for synthetic intelligence - Hardware specially developed and optimized for artificial intelligence. Weak artificial intelligence - Form of artificial intelligence.
Notes
^ a b See below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the post Chinese room. ^ AI creator John McCarthy composes: "we can not yet characterize in basic what kinds of computational treatments we desire to call intelligent. " [26] (For a conversation of some meanings of intelligence utilized by expert system researchers, see viewpoint of expert system.). ^ The Lighthill report particularly criticized AI's "grand objectives" and led the taking apart of AI research in England. [55] In the U.S., DARPA became figured out to money only "mission-oriented direct research study, instead of basic undirected research". [56] [57] ^ As AI creator John McCarthy writes "it would be a great relief to the remainder of the workers in AI if the innovators of brand-new basic formalisms would reveal their hopes in a more protected type than has in some cases been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As specified in a standard AI textbook: "The assertion that devices might possibly act wisely (or, maybe better, act as if they were intelligent) is called the 'weak AI' hypothesis by philosophers, and the assertion that makers that do so are actually believing (rather than mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to carry out a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to make sure that artificial general intelligence advantages all of humanity. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new objective is producing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were identified as being active in 2020. ^ a b c "AI timelines: What do professionals in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton gives up Google and alerts of risk ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can avoid the bad actors from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change modifications you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The real hazard is not AI itself but the way we release it. ^ "Impressed by expert system? Experts say AGI is following, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could position existential risks to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last creation that humankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the threat of extinction from AI should be an international top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists warn of danger of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from producing makers that can outthink us in general methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential danger". Medium. There is no factor to fear AI as an existential hazard. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as "device intelligence with the full variety of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is transforming our world - it is on everybody to make sure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent qualities is based upon the topics covered by major AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we think: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reconsidered: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reassessed: The principle of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine young boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar examination to AP Biology. Here's a list of hard exams both AI versions have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested evaluating an AI chatbot's capability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: photorum.eclat-mauve.fr My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software engineers prevented the term expert system for worry of being considered as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of machine intelligence: Despite progress in device intelligence, synthetic basic intelligence is still a significant difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not turn into a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us paradise or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future development in expert system: A study of professional viewpoint. In Fundamental concerns of synthetic intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in and Sotala 2012". AI Impacts (blog site). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as smart as Siri - however a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're getting in the AI golden zone between narrow and tandme.co.uk general AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are already seeing an early example of an AGI system in the just recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is debatable, however the agreement is that it is not AGI. ... If nothing else, GPT-3 informs us there is a happy medium between narrow and basic AI. ^ Quach, Katyanna. "A developer developed an AI chatbot using GPT-3 that helped a male speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can carry out over 600 jobs, from playing video games to controlling robotics", TechCrunch, archived from the initial on 16 June 2022, recovered 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could match human intelligence in 'simply a few years,' states CEO of Google's main A.I. research study lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI could pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone appears to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A vast array of views in existing research study, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer may end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (quoted in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable artificial intelligence for interest by the field about why a program acts the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the company's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense outweigh advantages?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Gain from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, threats, techniques (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York City, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that human beings will ruin ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security risk' to Australia, Senate query states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the ramifications of expert system - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The interesting Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI danger: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report cautions". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over danger posed but artificial intelligence can not be disregarded". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring fears over AI, warn researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder states huge tech is lying about AI termination risk". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market effect potential of large language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of employees could see their jobs impacted by AI. These are the jobs most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we require universal basic income since 'in the future, physical work will be a choice'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Expert System. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial basic intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, recovered 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, obtained 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Perspective, archived from the initial on 17 August 2007, retrieved 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Expert System: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The supreme effort is to make computer programs that can fix issues and attain objectives worldwide along with humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer system hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, obtained 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York City: Oxford University Press, archived from the initial on 25 July 2009, retrieved 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, recovered 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - by means of ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, retrieved 4 September 2013 - via ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, retrieved 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think about the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what might be called "Dyson's Law") that "Any system simple sufficient to be understandable will not be complicated enough to behave smartly, while any system complicated enough to act smartly will be too made complex to understand." (p. 197.) Computer researcher Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead simple dumb. They work, however they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, obtained 25 July 2010. Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from devices. For biological animals, factor and purpose originate from acting worldwide and experiencing the repercussions. Artificial intelligences - disembodied, complete strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically anticipate that those who want to get abundant from AI are going to have the interests of the rest people close at heart,' ... composes [Gary Marcus] 'We can't count on federal governments driven by campaign finance contributions [from tech companies] to press back.' ... Marcus information the needs that people ought to make from their federal governments and the tech business. They include openness on how AI systems work; settlement for individuals if their information [are] used to train LLMs (large language model) s and the right to grant this usage; and the ability to hold tech business responsible for the harms they bring on by removing Section 230, imposing money penalites, and passing stricter product liability laws ... Marcus also recommends ... that a new, AI-specific federal company, comparable to the FDA, the FCC, or the FTC, might supply the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... recommends ... develop [ing] a professional licensing program for engineers that would work in a comparable way to medical licenses, malpractice fits, and the Hippocratic oath in medication. 'What if, like medical professionals,' she asks ..., 'AI engineers also promised to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in synthetic intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually baffled people for decades, exposes the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competitors has revealed that although NLP (natural-language processing) models are capable of extraordinary accomplishments, their abilities are extremely much limited by the amount of context they receive. This [...] might cause [problems] for researchers who want to use them to do things such as examine ancient languages. In many cases, there are few historic records on long-gone civilizations to serve as training information for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to produce phony videos identical from genuine ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean sensible videos produced utilizing expert system that actually trick individuals, then they barely exist. The fakes aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in basic, running in our media as counterfeited proof. Their role better looks like that of cartoons, specifically smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We need to prevent humanizing machine-learning designs used in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of synthetic basic intelligence are stymmied by the usual issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, recovered 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, presented and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead authorities to neglect inconsistent proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but revealed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at jobs that require real humanlike thinking or an understanding of the physical and social world ... ChatGPT seemed unable to reason rationally and tried to rely on its huge database of ... facts originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are powerful however unreliable. Rules-based systems can not deal with circumstances their programmers did not prepare for. Learning systems are restricted by the information on which they were trained. AI failures have actually currently caused catastrophe. Advanced autopilot functions in cars, although they carry out well in some scenarios, have driven cars without warning into trucks, concrete barriers, and parked cars and trucks. In the wrong scenario, AI systems go from supersmart to superdumb in an immediate. When an opponent is trying to control and hack an AI system, the dangers are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by brand-new technologies but depend on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.